Evaluate
-\frac{1}{8}=-0.125
Factor
-\frac{1}{8} = -0.125
Share
Copied to clipboard
\frac{-2\times \frac{9}{4}+2^{2}}{\left(-2\right)^{2}}
Calculate -\frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\frac{-2\times 9}{4}+2^{2}}{\left(-2\right)^{2}}
Express -2\times \frac{9}{4} as a single fraction.
\frac{\frac{-18}{4}+2^{2}}{\left(-2\right)^{2}}
Multiply -2 and 9 to get -18.
\frac{-\frac{9}{2}+2^{2}}{\left(-2\right)^{2}}
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
\frac{-\frac{9}{2}+4}{\left(-2\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9}{2}+\frac{8}{2}}{\left(-2\right)^{2}}
Convert 4 to fraction \frac{8}{2}.
\frac{\frac{-9+8}{2}}{\left(-2\right)^{2}}
Since -\frac{9}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{2}}{\left(-2\right)^{2}}
Add -9 and 8 to get -1.
\frac{-\frac{1}{2}}{4}
Calculate -2 to the power of 2 and get 4.
\frac{-1}{2\times 4}
Express \frac{-\frac{1}{2}}{4} as a single fraction.
\frac{-1}{8}
Multiply 2 and 4 to get 8.
-\frac{1}{8}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}