Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\left(\left(-a^{3}\right)x\right)^{2}\right)^{2}\times \left(\left(\frac{1}{5}a^{6}x^{9}\right)^{0}\right)^{3}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 5 and 0 to get 0.
\left(-\left(\left(-a^{3}\right)x\right)^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 0 and 3 to get 0.
\left(-\left(-a^{3}\right)^{2}x^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Expand \left(\left(-a^{3}\right)x\right)^{2}.
\left(-\left(a^{3}\right)^{2}x^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Calculate -a^{3} to the power of 2 and get \left(a^{3}\right)^{2}.
\left(\left(a^{3}\right)^{2}x^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Calculate -\left(a^{3}\right)^{2}x^{2} to the power of 2 and get \left(\left(a^{3}\right)^{2}x^{2}\right)^{2}.
\left(\left(a^{3}\right)^{2}\right)^{2}\left(x^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Expand \left(\left(a^{3}\right)^{2}x^{2}\right)^{2}.
\left(a^{6}\right)^{2}\left(x^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{12}\left(x^{2}\right)^{2}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
a^{12}x^{4}\times \left(\frac{1}{5}a^{6}x^{9}\right)^{0}-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{12}x^{4}\times 1-x\times \left(\frac{1}{2}a^{3}x\right)^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Calculate \frac{1}{5}a^{6}x^{9} to the power of 0 and get 1.
a^{12}x^{4}\times 1-x\times \left(\frac{1}{2}\right)^{3}\left(a^{3}\right)^{3}x^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Expand \left(\frac{1}{2}a^{3}x\right)^{3}.
a^{12}x^{4}\times 1-x\times \left(\frac{1}{2}\right)^{3}a^{9}x^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
a^{12}x^{4}\times 1-x\times \frac{1}{8}a^{9}x^{3}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
a^{12}x^{4}\times 1-x^{4}\times \frac{1}{8}a^{9}\left(-2\right)a^{3}+\left(-2a^{3}x\right)^{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
a^{12}x^{4}\times 1-x^{4}\left(-\frac{1}{4}\right)a^{9}a^{3}+\left(-2a^{3}x\right)^{4}
Multiply \frac{1}{8} and -2 to get -\frac{1}{4}.
a^{12}x^{4}\times 1-x^{4}\left(-\frac{1}{4}\right)a^{12}+\left(-2a^{3}x\right)^{4}
To multiply powers of the same base, add their exponents. Add 9 and 3 to get 12.
\frac{5}{4}a^{12}x^{4}+\left(-2a^{3}x\right)^{4}
Combine a^{12}x^{4}\times 1 and -x^{4}\left(-\frac{1}{4}\right)a^{12} to get \frac{5}{4}a^{12}x^{4}.
\frac{5}{4}a^{12}x^{4}+\left(-2\right)^{4}\left(a^{3}\right)^{4}x^{4}
Expand \left(-2a^{3}x\right)^{4}.
\frac{5}{4}a^{12}x^{4}+\left(-2\right)^{4}a^{12}x^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{5}{4}a^{12}x^{4}+16a^{12}x^{4}
Calculate -2 to the power of 4 and get 16.
\frac{69}{4}a^{12}x^{4}
Combine \frac{5}{4}a^{12}x^{4} and 16a^{12}x^{4} to get \frac{69}{4}a^{12}x^{4}.