Evaluate
\frac{xzy^{2}}{2}
Expand
\frac{xzy^{2}}{2}
Share
Copied to clipboard
\frac{-\left(-\frac{1}{4}\right)^{3}x^{3}\left(y^{2}\right)^{3}z^{3}-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Expand \left(-\frac{1}{4}xy^{2}z\right)^{3}.
\frac{-\left(-\frac{1}{4}\right)^{3}x^{3}y^{6}z^{3}-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-\left(-\frac{1}{64}x^{3}y^{6}z^{3}\right)-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Calculate -\frac{1}{4} to the power of 3 and get -\frac{1}{64}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
The opposite of -\frac{1}{64}x^{3}y^{6}z^{3} is \frac{1}{64}x^{3}y^{6}z^{3}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(\frac{1}{2}\right)^{2}x^{2}\left(y^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Expand \left(\frac{1}{2}xy^{2}\right)^{2}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(\frac{1}{2}\right)^{2}x^{2}y^{4}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\frac{1}{4}x^{2}y^{4}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(-\frac{1}{64}x^{2}y^{4}xy^{2}z^{3}\right)+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Multiply \frac{1}{4} and -\frac{1}{16} to get -\frac{1}{64}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(-\frac{1}{64}x^{3}y^{4}y^{2}z^{3}\right)+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(-\frac{1}{64}x^{3}y^{6}z^{3}\right)+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}+\frac{1}{64}x^{3}y^{6}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
The opposite of -\frac{1}{64}x^{3}y^{6}z^{3} is \frac{1}{64}x^{3}y^{6}z^{3}.
\frac{\frac{1}{32}x^{3}y^{6}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Combine \frac{1}{64}x^{3}y^{6}z^{3} and \frac{1}{64}x^{3}y^{6}z^{3} to get \frac{1}{32}x^{3}y^{6}z^{3}.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Combine \frac{1}{32}x^{3}y^{6}z^{3} and \frac{3}{4}x^{3}y^{6}z^{3} to get \frac{25}{32}x^{3}y^{6}z^{3}.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}\right)^{2}x^{2}\left(y^{2}\right)^{2}z^{2}}
Expand \left(-\frac{5}{4}xy^{2}z\right)^{2}.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}\right)^{2}x^{2}y^{4}z^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\frac{25}{16}x^{2}y^{4}z^{2}}
Calculate -\frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{\frac{25}{32}xzy^{2}}{\frac{25}{16}}
Cancel out x^{2}z^{2}y^{4} in both numerator and denominator.
\frac{\frac{25}{32}xzy^{2}\times 16}{25}
Divide \frac{25}{32}xzy^{2} by \frac{25}{16} by multiplying \frac{25}{32}xzy^{2} by the reciprocal of \frac{25}{16}.
\frac{\frac{25}{2}xzy^{2}}{25}
Multiply \frac{25}{32} and 16 to get \frac{25}{2}.
\frac{1}{2}xzy^{2}
Divide \frac{25}{2}xzy^{2} by 25 to get \frac{1}{2}xzy^{2}.
\frac{-\left(-\frac{1}{4}\right)^{3}x^{3}\left(y^{2}\right)^{3}z^{3}-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Expand \left(-\frac{1}{4}xy^{2}z\right)^{3}.
\frac{-\left(-\frac{1}{4}\right)^{3}x^{3}y^{6}z^{3}-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-\left(-\frac{1}{64}x^{3}y^{6}z^{3}\right)-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Calculate -\frac{1}{4} to the power of 3 and get -\frac{1}{64}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(\frac{1}{2}xy^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
The opposite of -\frac{1}{64}x^{3}y^{6}z^{3} is \frac{1}{64}x^{3}y^{6}z^{3}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(\frac{1}{2}\right)^{2}x^{2}\left(y^{2}\right)^{2}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Expand \left(\frac{1}{2}xy^{2}\right)^{2}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(\frac{1}{2}\right)^{2}x^{2}y^{4}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\frac{1}{4}x^{2}y^{4}\left(-\frac{1}{16}\right)xy^{2}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(-\frac{1}{64}x^{2}y^{4}xy^{2}z^{3}\right)+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Multiply \frac{1}{4} and -\frac{1}{16} to get -\frac{1}{64}.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(-\frac{1}{64}x^{3}y^{4}y^{2}z^{3}\right)+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}-\left(-\frac{1}{64}x^{3}y^{6}z^{3}\right)+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\frac{1}{64}x^{3}y^{6}z^{3}+\frac{1}{64}x^{3}y^{6}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
The opposite of -\frac{1}{64}x^{3}y^{6}z^{3} is \frac{1}{64}x^{3}y^{6}z^{3}.
\frac{\frac{1}{32}x^{3}y^{6}z^{3}+\frac{3}{4}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Combine \frac{1}{64}x^{3}y^{6}z^{3} and \frac{1}{64}x^{3}y^{6}z^{3} to get \frac{1}{32}x^{3}y^{6}z^{3}.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}xy^{2}z\right)^{2}}
Combine \frac{1}{32}x^{3}y^{6}z^{3} and \frac{3}{4}x^{3}y^{6}z^{3} to get \frac{25}{32}x^{3}y^{6}z^{3}.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}\right)^{2}x^{2}\left(y^{2}\right)^{2}z^{2}}
Expand \left(-\frac{5}{4}xy^{2}z\right)^{2}.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\left(-\frac{5}{4}\right)^{2}x^{2}y^{4}z^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{25}{32}x^{3}y^{6}z^{3}}{\frac{25}{16}x^{2}y^{4}z^{2}}
Calculate -\frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{\frac{25}{32}xzy^{2}}{\frac{25}{16}}
Cancel out x^{2}z^{2}y^{4} in both numerator and denominator.
\frac{\frac{25}{32}xzy^{2}\times 16}{25}
Divide \frac{25}{32}xzy^{2} by \frac{25}{16} by multiplying \frac{25}{32}xzy^{2} by the reciprocal of \frac{25}{16}.
\frac{\frac{25}{2}xzy^{2}}{25}
Multiply \frac{25}{32} and 16 to get \frac{25}{2}.
\frac{1}{2}xzy^{2}
Divide \frac{25}{2}xzy^{2} by 25 to get \frac{1}{2}xzy^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}