[ - \frac { 5 } { 2 } ) \times ( \frac { 4 } { 3 } ) ( - \frac { 7 } { 10 } ) \times ( - \frac { 12 } { 5 } - \frac { 8 } { 3 } ) = ( - \frac { 7 } { 5 } )
Verify
false
Share
Copied to clipboard
\frac{-5\times 4}{2\times 3}\left(-\frac{7}{10}\right)\left(-\frac{12}{5}-\frac{8}{3}\right)=-\frac{7}{5}
Multiply -\frac{5}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-20}{6}\left(-\frac{7}{10}\right)\left(-\frac{12}{5}-\frac{8}{3}\right)=-\frac{7}{5}
Do the multiplications in the fraction \frac{-5\times 4}{2\times 3}.
-\frac{10}{3}\left(-\frac{7}{10}\right)\left(-\frac{12}{5}-\frac{8}{3}\right)=-\frac{7}{5}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
\frac{-10\left(-7\right)}{3\times 10}\left(-\frac{12}{5}-\frac{8}{3}\right)=-\frac{7}{5}
Multiply -\frac{10}{3} times -\frac{7}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{70}{30}\left(-\frac{12}{5}-\frac{8}{3}\right)=-\frac{7}{5}
Do the multiplications in the fraction \frac{-10\left(-7\right)}{3\times 10}.
\frac{7}{3}\left(-\frac{12}{5}-\frac{8}{3}\right)=-\frac{7}{5}
Reduce the fraction \frac{70}{30} to lowest terms by extracting and canceling out 10.
\frac{7}{3}\left(-\frac{36}{15}-\frac{40}{15}\right)=-\frac{7}{5}
Least common multiple of 5 and 3 is 15. Convert -\frac{12}{5} and \frac{8}{3} to fractions with denominator 15.
\frac{7}{3}\times \frac{-36-40}{15}=-\frac{7}{5}
Since -\frac{36}{15} and \frac{40}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{3}\left(-\frac{76}{15}\right)=-\frac{7}{5}
Subtract 40 from -36 to get -76.
\frac{7\left(-76\right)}{3\times 15}=-\frac{7}{5}
Multiply \frac{7}{3} times -\frac{76}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{-532}{45}=-\frac{7}{5}
Do the multiplications in the fraction \frac{7\left(-76\right)}{3\times 15}.
-\frac{532}{45}=-\frac{7}{5}
Fraction \frac{-532}{45} can be rewritten as -\frac{532}{45} by extracting the negative sign.
-\frac{532}{45}=-\frac{63}{45}
Least common multiple of 45 and 5 is 45. Convert -\frac{532}{45} and -\frac{7}{5} to fractions with denominator 45.
\text{false}
Compare -\frac{532}{45} and -\frac{63}{45}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}