Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{-\frac{3}{2}x^{5}y^{2}\times \frac{1}{9}y^{3}-\frac{3}{5}x^{3}y\left(-\frac{5}{6}\right)x^{2}y^{4}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{-\frac{3}{2}x^{5}y^{5}\times \frac{1}{9}-\frac{3}{5}x^{3}y\left(-\frac{5}{6}\right)x^{2}y^{4}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-\frac{3}{2}x^{5}y^{5}\times \frac{1}{9}-\frac{3}{5}x^{5}y\left(-\frac{5}{6}\right)y^{4}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{-\frac{3}{2}x^{5}y^{5}\times \frac{1}{9}-\frac{3}{5}x^{5}y^{5}\left(-\frac{5}{6}\right)}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{-\frac{1}{6}x^{5}y^{5}-\frac{3}{5}x^{5}y^{5}\left(-\frac{5}{6}\right)}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
Multiply -\frac{3}{2} and \frac{1}{9} to get -\frac{1}{6}.
\frac{-\frac{1}{6}x^{5}y^{5}-\left(-\frac{1}{2}x^{5}y^{5}\right)}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
Multiply \frac{3}{5} and -\frac{5}{6} to get -\frac{1}{2}.
\frac{-\frac{1}{6}x^{5}y^{5}+\frac{1}{2}x^{5}y^{5}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
The opposite of -\frac{1}{2}x^{5}y^{5} is \frac{1}{2}x^{5}y^{5}.
\frac{\frac{1}{3}x^{5}y^{5}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
Combine -\frac{1}{6}x^{5}y^{5} and \frac{1}{2}x^{5}y^{5} to get \frac{1}{3}x^{5}y^{5}.
\frac{\frac{1}{3}x^{5}y^{5}}{\frac{4}{3}x^{4}y^{4}}-\frac{1}{3}xy
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{3}xy}{\frac{4}{3}}-\frac{1}{3}xy
Cancel out x^{4}y^{4} in both numerator and denominator.
\frac{\frac{1}{3}xy\times 3}{4}-\frac{1}{3}xy
Divide \frac{1}{3}xy by \frac{4}{3} by multiplying \frac{1}{3}xy by the reciprocal of \frac{4}{3}.
\frac{xy}{4}-\frac{1}{3}xy
Multiply \frac{1}{3} and 3 to get 1.
-\frac{1}{12}xy
Combine \frac{xy}{4} and -\frac{1}{3}xy to get -\frac{1}{12}xy.
\frac{-\frac{3}{2}x^{5}y^{2}\times \frac{1}{9}y^{3}-\frac{3}{5}x^{3}y\left(-\frac{5}{6}\right)x^{2}y^{4}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{-\frac{3}{2}x^{5}y^{5}\times \frac{1}{9}-\frac{3}{5}x^{3}y\left(-\frac{5}{6}\right)x^{2}y^{4}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-\frac{3}{2}x^{5}y^{5}\times \frac{1}{9}-\frac{3}{5}x^{5}y\left(-\frac{5}{6}\right)y^{4}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{-\frac{3}{2}x^{5}y^{5}\times \frac{1}{9}-\frac{3}{5}x^{5}y^{5}\left(-\frac{5}{6}\right)}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{-\frac{1}{6}x^{5}y^{5}-\frac{3}{5}x^{5}y^{5}\left(-\frac{5}{6}\right)}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
Multiply -\frac{3}{2} and \frac{1}{9} to get -\frac{1}{6}.
\frac{-\frac{1}{6}x^{5}y^{5}-\left(-\frac{1}{2}x^{5}y^{5}\right)}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
Multiply \frac{3}{5} and -\frac{5}{6} to get -\frac{1}{2}.
\frac{-\frac{1}{6}x^{5}y^{5}+\frac{1}{2}x^{5}y^{5}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
The opposite of -\frac{1}{2}x^{5}y^{5} is \frac{1}{2}x^{5}y^{5}.
\frac{\frac{1}{3}x^{5}y^{5}}{\frac{8}{6}x^{4}y^{4}}-\frac{1}{3}xy
Combine -\frac{1}{6}x^{5}y^{5} and \frac{1}{2}x^{5}y^{5} to get \frac{1}{3}x^{5}y^{5}.
\frac{\frac{1}{3}x^{5}y^{5}}{\frac{4}{3}x^{4}y^{4}}-\frac{1}{3}xy
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{3}xy}{\frac{4}{3}}-\frac{1}{3}xy
Cancel out x^{4}y^{4} in both numerator and denominator.
\frac{\frac{1}{3}xy\times 3}{4}-\frac{1}{3}xy
Divide \frac{1}{3}xy by \frac{4}{3} by multiplying \frac{1}{3}xy by the reciprocal of \frac{4}{3}.
\frac{xy}{4}-\frac{1}{3}xy
Multiply \frac{1}{3} and 3 to get 1.
-\frac{1}{12}xy
Combine \frac{xy}{4} and -\frac{1}{3}xy to get -\frac{1}{12}xy.