Evaluate
-\frac{3b^{17}a^{18}}{2}
Expand
-\frac{3b^{17}a^{18}}{2}
Share
Copied to clipboard
\left(-\frac{3}{2}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Expand \left(-\frac{3}{2}a^{3}b^{2}\right)^{4}.
\left(-\frac{3}{2}\right)^{4}a^{12}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\left(-\frac{3}{2}\right)^{4}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Calculate -\frac{3}{2} to the power of 4 and get \frac{81}{16}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}\left(a^{2}\right)^{3}\left(b^{3}\right)^{3}
Expand \left(-\frac{2}{3}a^{2}b^{3}\right)^{3}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}\left(b^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}b^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{81}{16}a^{12}b^{8}\left(-\frac{8}{27}\right)a^{6}b^{9}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
-\frac{3}{2}a^{12}b^{8}a^{6}b^{9}
Multiply \frac{81}{16} and -\frac{8}{27} to get -\frac{3}{2}.
-\frac{3}{2}a^{18}b^{8}b^{9}
To multiply powers of the same base, add their exponents. Add 12 and 6 to get 18.
-\frac{3}{2}a^{18}b^{17}
To multiply powers of the same base, add their exponents. Add 8 and 9 to get 17.
\left(-\frac{3}{2}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Expand \left(-\frac{3}{2}a^{3}b^{2}\right)^{4}.
\left(-\frac{3}{2}\right)^{4}a^{12}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\left(-\frac{3}{2}\right)^{4}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Calculate -\frac{3}{2} to the power of 4 and get \frac{81}{16}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}\left(a^{2}\right)^{3}\left(b^{3}\right)^{3}
Expand \left(-\frac{2}{3}a^{2}b^{3}\right)^{3}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}\left(b^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}b^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{81}{16}a^{12}b^{8}\left(-\frac{8}{27}\right)a^{6}b^{9}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
-\frac{3}{2}a^{12}b^{8}a^{6}b^{9}
Multiply \frac{81}{16} and -\frac{8}{27} to get -\frac{3}{2}.
-\frac{3}{2}a^{18}b^{8}b^{9}
To multiply powers of the same base, add their exponents. Add 12 and 6 to get 18.
-\frac{3}{2}a^{18}b^{17}
To multiply powers of the same base, add their exponents. Add 8 and 9 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}