Evaluate
\frac{3b^{23}a^{24}}{16}
Expand
\frac{3b^{23}a^{24}}{16}
Share
Copied to clipboard
\left(-\frac{3}{2}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
Expand \left(-\frac{3}{2}a^{3}b^{2}\right)^{4}.
\left(-\frac{3}{2}\right)^{4}a^{12}\left(b^{2}\right)^{4}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\left(-\frac{3}{2}\right)^{4}a^{12}b^{8}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{81}{16}a^{12}b^{8}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
Calculate -\frac{3}{2} to the power of 4 and get \frac{81}{16}.
\frac{81}{16}a^{12}b^{8}\times \left(\frac{a^{2}a^{2}}{3}b^{5}\right)^{3}
Express \frac{a^{2}}{3}a^{2} as a single fraction.
\frac{81}{16}a^{12}b^{8}\times \left(\frac{a^{2}a^{2}b^{5}}{3}\right)^{3}
Express \frac{a^{2}a^{2}}{3}b^{5} as a single fraction.
\frac{81}{16}a^{12}b^{8}\times \frac{\left(a^{2}a^{2}b^{5}\right)^{3}}{3^{3}}
To raise \frac{a^{2}a^{2}b^{5}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(a^{2}a^{2}b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
Multiply \frac{81}{16} times \frac{\left(a^{2}a^{2}b^{5}\right)^{3}}{3^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{81\left(a^{4}b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{81\left(a^{4}\right)^{3}\left(b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
Expand \left(a^{4}b^{5}\right)^{3}.
\frac{81a^{12}\left(b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{81a^{12}b^{15}}{16\times 3^{3}}a^{12}b^{8}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{81a^{12}b^{15}}{16\times 27}a^{12}b^{8}
Calculate 3 to the power of 3 and get 27.
\frac{81a^{12}b^{15}}{432}a^{12}b^{8}
Multiply 16 and 27 to get 432.
\frac{3}{16}a^{12}b^{15}a^{12}b^{8}
Divide 81a^{12}b^{15} by 432 to get \frac{3}{16}a^{12}b^{15}.
\frac{3}{16}a^{24}b^{15}b^{8}
To multiply powers of the same base, add their exponents. Add 12 and 12 to get 24.
\frac{3}{16}a^{24}b^{23}
To multiply powers of the same base, add their exponents. Add 15 and 8 to get 23.
\left(-\frac{3}{2}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
Expand \left(-\frac{3}{2}a^{3}b^{2}\right)^{4}.
\left(-\frac{3}{2}\right)^{4}a^{12}\left(b^{2}\right)^{4}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\left(-\frac{3}{2}\right)^{4}a^{12}b^{8}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{81}{16}a^{12}b^{8}\times \left(\frac{a^{2}}{3}a^{2}b^{5}\right)^{3}
Calculate -\frac{3}{2} to the power of 4 and get \frac{81}{16}.
\frac{81}{16}a^{12}b^{8}\times \left(\frac{a^{2}a^{2}}{3}b^{5}\right)^{3}
Express \frac{a^{2}}{3}a^{2} as a single fraction.
\frac{81}{16}a^{12}b^{8}\times \left(\frac{a^{2}a^{2}b^{5}}{3}\right)^{3}
Express \frac{a^{2}a^{2}}{3}b^{5} as a single fraction.
\frac{81}{16}a^{12}b^{8}\times \frac{\left(a^{2}a^{2}b^{5}\right)^{3}}{3^{3}}
To raise \frac{a^{2}a^{2}b^{5}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(a^{2}a^{2}b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
Multiply \frac{81}{16} times \frac{\left(a^{2}a^{2}b^{5}\right)^{3}}{3^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{81\left(a^{4}b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{81\left(a^{4}\right)^{3}\left(b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
Expand \left(a^{4}b^{5}\right)^{3}.
\frac{81a^{12}\left(b^{5}\right)^{3}}{16\times 3^{3}}a^{12}b^{8}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{81a^{12}b^{15}}{16\times 3^{3}}a^{12}b^{8}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{81a^{12}b^{15}}{16\times 27}a^{12}b^{8}
Calculate 3 to the power of 3 and get 27.
\frac{81a^{12}b^{15}}{432}a^{12}b^{8}
Multiply 16 and 27 to get 432.
\frac{3}{16}a^{12}b^{15}a^{12}b^{8}
Divide 81a^{12}b^{15} by 432 to get \frac{3}{16}a^{12}b^{15}.
\frac{3}{16}a^{24}b^{15}b^{8}
To multiply powers of the same base, add their exponents. Add 12 and 12 to get 24.
\frac{3}{16}a^{24}b^{23}
To multiply powers of the same base, add their exponents. Add 15 and 8 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}