Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4xy+4y^{2}-\left(x+y\right)\left(x-y\right)=2y
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
x^{2}-4xy+4y^{2}-\left(x^{2}-y^{2}\right)=2y
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-4xy+4y^{2}-x^{2}+y^{2}=2y
To find the opposite of x^{2}-y^{2}, find the opposite of each term.
-4xy+4y^{2}+y^{2}=2y
Combine x^{2} and -x^{2} to get 0.
-4xy+5y^{2}=2y
Combine 4y^{2} and y^{2} to get 5y^{2}.
-4xy=2y-5y^{2}
Subtract 5y^{2} from both sides.
\left(-4y\right)x=2y-5y^{2}
The equation is in standard form.
\frac{\left(-4y\right)x}{-4y}=\frac{y\left(2-5y\right)}{-4y}
Divide both sides by -4y.
x=\frac{y\left(2-5y\right)}{-4y}
Dividing by -4y undoes the multiplication by -4y.
x=\frac{5y}{4}-\frac{1}{2}
Divide y\left(2-5y\right) by -4y.
x^{2}-4xy+4y^{2}-\left(x+y\right)\left(x-y\right)=2y
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
x^{2}-4xy+4y^{2}-\left(x^{2}-y^{2}\right)=2y
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-4xy+4y^{2}-x^{2}+y^{2}=2y
To find the opposite of x^{2}-y^{2}, find the opposite of each term.
-4xy+4y^{2}+y^{2}=2y
Combine x^{2} and -x^{2} to get 0.
-4xy+5y^{2}=2y
Combine 4y^{2} and y^{2} to get 5y^{2}.
-4xy=2y-5y^{2}
Subtract 5y^{2} from both sides.
\left(-4y\right)x=2y-5y^{2}
The equation is in standard form.
\frac{\left(-4y\right)x}{-4y}=\frac{y\left(2-5y\right)}{-4y}
Divide both sides by -4y.
x=\frac{y\left(2-5y\right)}{-4y}
Dividing by -4y undoes the multiplication by -4y.
x=\frac{5y}{4}-\frac{1}{2}
Divide y\left(2-5y\right) by -4y.