Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{5y}{4}-\frac{1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{5y}{4}-\frac{1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Solve for y
y=\frac{4x+2}{5}
y=0
Graph
Share
Copied to clipboard
x^{2}-4xy+4y^{2}-\left(x+y\right)\left(x-y\right)=2y
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
x^{2}-4xy+4y^{2}-\left(x^{2}-y^{2}\right)=2y
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-4xy+4y^{2}-x^{2}+y^{2}=2y
To find the opposite of x^{2}-y^{2}, find the opposite of each term.
-4xy+4y^{2}+y^{2}=2y
Combine x^{2} and -x^{2} to get 0.
-4xy+5y^{2}=2y
Combine 4y^{2} and y^{2} to get 5y^{2}.
-4xy=2y-5y^{2}
Subtract 5y^{2} from both sides.
\left(-4y\right)x=2y-5y^{2}
The equation is in standard form.
\frac{\left(-4y\right)x}{-4y}=\frac{y\left(2-5y\right)}{-4y}
Divide both sides by -4y.
x=\frac{y\left(2-5y\right)}{-4y}
Dividing by -4y undoes the multiplication by -4y.
x=\frac{5y}{4}-\frac{1}{2}
Divide y\left(2-5y\right) by -4y.
x^{2}-4xy+4y^{2}-\left(x+y\right)\left(x-y\right)=2y
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2y\right)^{2}.
x^{2}-4xy+4y^{2}-\left(x^{2}-y^{2}\right)=2y
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-4xy+4y^{2}-x^{2}+y^{2}=2y
To find the opposite of x^{2}-y^{2}, find the opposite of each term.
-4xy+4y^{2}+y^{2}=2y
Combine x^{2} and -x^{2} to get 0.
-4xy+5y^{2}=2y
Combine 4y^{2} and y^{2} to get 5y^{2}.
-4xy=2y-5y^{2}
Subtract 5y^{2} from both sides.
\left(-4y\right)x=2y-5y^{2}
The equation is in standard form.
\frac{\left(-4y\right)x}{-4y}=\frac{y\left(2-5y\right)}{-4y}
Divide both sides by -4y.
x=\frac{y\left(2-5y\right)}{-4y}
Dividing by -4y undoes the multiplication by -4y.
x=\frac{5y}{4}-\frac{1}{2}
Divide y\left(2-5y\right) by -4y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}