Evaluate
3
Factor
3
Graph
Share
Copied to clipboard
\left(\left(x-1\right)\left(x+1\right)-\left(1-2x\right)\left(1+2x\right)\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Multiply x and x to get x^{2}.
\left(x^{2}-1-\left(1-2x\right)\left(1+2x\right)\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(x^{2}-1-\left(1-\left(2x\right)^{2}\right)\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Consider \left(1-2x\right)\left(1+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(x^{2}-1-\left(1-2^{2}x^{2}\right)\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Expand \left(2x\right)^{2}.
\left(x^{2}-1-\left(1-4x^{2}\right)\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Calculate 2 to the power of 2 and get 4.
\left(x^{2}-1-1+4x^{2}\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
To find the opposite of 1-4x^{2}, find the opposite of each term.
\left(x^{2}-2+4x^{2}\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Subtract 1 from -1 to get -2.
\left(5x^{2}-2\right)^{2}-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Combine x^{2} and 4x^{2} to get 5x^{2}.
25\left(x^{2}\right)^{2}-20x^{2}+4-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x^{2}-2\right)^{2}.
25x^{4}-20x^{2}+4-\left(5x^{2}+1\right)^{2}-6x^{2}\left(-5\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
25x^{4}-20x^{2}+4-\left(25\left(x^{2}\right)^{2}+10x^{2}+1\right)-6x^{2}\left(-5\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x^{2}+1\right)^{2}.
25x^{4}-20x^{2}+4-\left(25x^{4}+10x^{2}+1\right)-6x^{2}\left(-5\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
25x^{4}-20x^{2}+4-25x^{4}-10x^{2}-1-6x^{2}\left(-5\right)
To find the opposite of 25x^{4}+10x^{2}+1, find the opposite of each term.
-20x^{2}+4-10x^{2}-1-6x^{2}\left(-5\right)
Combine 25x^{4} and -25x^{4} to get 0.
-30x^{2}+4-1-6x^{2}\left(-5\right)
Combine -20x^{2} and -10x^{2} to get -30x^{2}.
-30x^{2}+3-6x^{2}\left(-5\right)
Subtract 1 from 4 to get 3.
-30x^{2}+3+30x^{2}
Multiply -6 and -5 to get 30.
3
Combine -30x^{2} and 30x^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}