Solve for x
x=\frac{y}{2}+\frac{1}{y^{2}}
y\neq 0
Graph
Share
Copied to clipboard
\left(x^{2}+y^{2}-\left(x-y\right)^{2}+2y\left(x-y\right)\right)y=4
Multiply both sides of the equation by 4.
\left(x^{2}+y^{2}-\left(x^{2}-2xy+y^{2}\right)+2y\left(x-y\right)\right)y=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
\left(x^{2}+y^{2}-x^{2}+2xy-y^{2}+2y\left(x-y\right)\right)y=4
To find the opposite of x^{2}-2xy+y^{2}, find the opposite of each term.
\left(y^{2}+2xy-y^{2}+2y\left(x-y\right)\right)y=4
Combine x^{2} and -x^{2} to get 0.
\left(2xy+2y\left(x-y\right)\right)y=4
Combine y^{2} and -y^{2} to get 0.
\left(2xy+2yx-2y^{2}\right)y=4
Use the distributive property to multiply 2y by x-y.
\left(4xy-2y^{2}\right)y=4
Combine 2xy and 2yx to get 4xy.
4xy^{2}-2y^{3}=4
Use the distributive property to multiply 4xy-2y^{2} by y.
4xy^{2}=4+2y^{3}
Add 2y^{3} to both sides.
4y^{2}x=2y^{3}+4
The equation is in standard form.
\frac{4y^{2}x}{4y^{2}}=\frac{2y^{3}+4}{4y^{2}}
Divide both sides by 4y^{2}.
x=\frac{2y^{3}+4}{4y^{2}}
Dividing by 4y^{2} undoes the multiplication by 4y^{2}.
x=\frac{y}{2}+\frac{1}{y^{2}}
Divide 4+2y^{3} by 4y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}