Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4xy+4y^{2}-\left(x+y\right)\left(3x-y\right)-5y^{2}=2x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2y\right)^{2}.
x^{2}+4xy+4y^{2}-\left(3x^{2}+2xy-y^{2}\right)-5y^{2}=2x
Use the distributive property to multiply x+y by 3x-y and combine like terms.
x^{2}+4xy+4y^{2}-3x^{2}-2xy+y^{2}-5y^{2}=2x
To find the opposite of 3x^{2}+2xy-y^{2}, find the opposite of each term.
-2x^{2}+4xy+4y^{2}-2xy+y^{2}-5y^{2}=2x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2xy+4y^{2}+y^{2}-5y^{2}=2x
Combine 4xy and -2xy to get 2xy.
-2x^{2}+2xy+5y^{2}-5y^{2}=2x
Combine 4y^{2} and y^{2} to get 5y^{2}.
-2x^{2}+2xy=2x
Combine 5y^{2} and -5y^{2} to get 0.
2xy=2x+2x^{2}
Add 2x^{2} to both sides.
2xy=2x^{2}+2x
The equation is in standard form.
\frac{2xy}{2x}=\frac{2x\left(x+1\right)}{2x}
Divide both sides by 2x.
y=\frac{2x\left(x+1\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
y=x+1
Divide 2x\left(1+x\right) by 2x.
x^{2}+4xy+4y^{2}-\left(x+y\right)\left(3x-y\right)-5y^{2}=2x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2y\right)^{2}.
x^{2}+4xy+4y^{2}-\left(3x^{2}+2xy-y^{2}\right)-5y^{2}=2x
Use the distributive property to multiply x+y by 3x-y and combine like terms.
x^{2}+4xy+4y^{2}-3x^{2}-2xy+y^{2}-5y^{2}=2x
To find the opposite of 3x^{2}+2xy-y^{2}, find the opposite of each term.
-2x^{2}+4xy+4y^{2}-2xy+y^{2}-5y^{2}=2x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2xy+4y^{2}+y^{2}-5y^{2}=2x
Combine 4xy and -2xy to get 2xy.
-2x^{2}+2xy+5y^{2}-5y^{2}=2x
Combine 4y^{2} and y^{2} to get 5y^{2}.
-2x^{2}+2xy=2x
Combine 5y^{2} and -5y^{2} to get 0.
2xy=2x+2x^{2}
Add 2x^{2} to both sides.
2xy=2x^{2}+2x
The equation is in standard form.
\frac{2xy}{2x}=\frac{2x\left(x+1\right)}{2x}
Divide both sides by 2x.
y=\frac{2x\left(x+1\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
y=x+1
Divide 2x\left(1+x\right) by 2x.