Solve for y (complex solution)
\left\{\begin{matrix}\\y=x+1\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=x+1\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
x=y-1
x=0
Graph
Share
Copied to clipboard
x^{2}+4xy+4y^{2}-\left(x+y\right)\left(3x-y\right)-5y^{2}=2x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2y\right)^{2}.
x^{2}+4xy+4y^{2}-\left(3x^{2}+2xy-y^{2}\right)-5y^{2}=2x
Use the distributive property to multiply x+y by 3x-y and combine like terms.
x^{2}+4xy+4y^{2}-3x^{2}-2xy+y^{2}-5y^{2}=2x
To find the opposite of 3x^{2}+2xy-y^{2}, find the opposite of each term.
-2x^{2}+4xy+4y^{2}-2xy+y^{2}-5y^{2}=2x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2xy+4y^{2}+y^{2}-5y^{2}=2x
Combine 4xy and -2xy to get 2xy.
-2x^{2}+2xy+5y^{2}-5y^{2}=2x
Combine 4y^{2} and y^{2} to get 5y^{2}.
-2x^{2}+2xy=2x
Combine 5y^{2} and -5y^{2} to get 0.
2xy=2x+2x^{2}
Add 2x^{2} to both sides.
2xy=2x^{2}+2x
The equation is in standard form.
\frac{2xy}{2x}=\frac{2x\left(x+1\right)}{2x}
Divide both sides by 2x.
y=\frac{2x\left(x+1\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
y=x+1
Divide 2x\left(1+x\right) by 2x.
x^{2}+4xy+4y^{2}-\left(x+y\right)\left(3x-y\right)-5y^{2}=2x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2y\right)^{2}.
x^{2}+4xy+4y^{2}-\left(3x^{2}+2xy-y^{2}\right)-5y^{2}=2x
Use the distributive property to multiply x+y by 3x-y and combine like terms.
x^{2}+4xy+4y^{2}-3x^{2}-2xy+y^{2}-5y^{2}=2x
To find the opposite of 3x^{2}+2xy-y^{2}, find the opposite of each term.
-2x^{2}+4xy+4y^{2}-2xy+y^{2}-5y^{2}=2x
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+2xy+4y^{2}+y^{2}-5y^{2}=2x
Combine 4xy and -2xy to get 2xy.
-2x^{2}+2xy+5y^{2}-5y^{2}=2x
Combine 4y^{2} and y^{2} to get 5y^{2}.
-2x^{2}+2xy=2x
Combine 5y^{2} and -5y^{2} to get 0.
2xy=2x+2x^{2}
Add 2x^{2} to both sides.
2xy=2x^{2}+2x
The equation is in standard form.
\frac{2xy}{2x}=\frac{2x\left(x+1\right)}{2x}
Divide both sides by 2x.
y=\frac{2x\left(x+1\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
y=x+1
Divide 2x\left(1+x\right) by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}