Skip to main content
Solve for x
Tick mark Image
Graph

Share

\left(x+1\right)\times \frac{x+1}{2}=100\times 2
Multiply both sides by 2.
\left(x+1\right)\left(x+1\right)=200\times 2
Multiply both sides of the equation by 2.
\left(x+1\right)^{2}=200\times 2
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
x^{2}+2x+1=200\times 2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=400
Multiply 200 and 2 to get 400.
x^{2}+2x+1-400=0
Subtract 400 from both sides.
x^{2}+2x-399=0
Subtract 400 from 1 to get -399.
x=\frac{-2±\sqrt{2^{2}-4\left(-399\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -399 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-399\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+1596}}{2}
Multiply -4 times -399.
x=\frac{-2±\sqrt{1600}}{2}
Add 4 to 1596.
x=\frac{-2±40}{2}
Take the square root of 1600.
x=\frac{38}{2}
Now solve the equation x=\frac{-2±40}{2} when ± is plus. Add -2 to 40.
x=19
Divide 38 by 2.
x=-\frac{42}{2}
Now solve the equation x=\frac{-2±40}{2} when ± is minus. Subtract 40 from -2.
x=-21
Divide -42 by 2.
x=19 x=-21
The equation is now solved.
\left(x+1\right)\times \frac{x+1}{2}=100\times 2
Multiply both sides by 2.
\left(x+1\right)\left(x+1\right)=200\times 2
Multiply both sides of the equation by 2.
\left(x+1\right)^{2}=200\times 2
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
x^{2}+2x+1=200\times 2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=400
Multiply 200 and 2 to get 400.
\left(x+1\right)^{2}=400
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{400}
Take the square root of both sides of the equation.
x+1=20 x+1=-20
Simplify.
x=19 x=-21
Subtract 1 from both sides of the equation.