Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+2x+1-4x\right)^{2}-\left(x^{2}+1\right)^{2}-\left(x^{2}-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x^{2}-2x+1\right)^{2}-\left(x^{2}+1\right)^{2}-\left(x^{2}-2x\right)^{2}
Combine 2x and -4x to get -2x.
x^{4}-4x^{3}+6x^{2}-4x+1-\left(x^{2}+1\right)^{2}-\left(x^{2}-2x\right)^{2}
Square x^{2}-2x+1.
x^{4}-4x^{3}+6x^{2}-4x+1-\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)-\left(x^{2}-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}-4x^{3}+6x^{2}-4x+1-\left(x^{4}+2x^{2}+1\right)-\left(x^{2}-2x\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-4x^{3}+6x^{2}-4x+1-x^{4}-2x^{2}-1-\left(x^{2}-2x\right)^{2}
To find the opposite of x^{4}+2x^{2}+1, find the opposite of each term.
-4x^{3}+6x^{2}-4x+1-2x^{2}-1-\left(x^{2}-2x\right)^{2}
Combine x^{4} and -x^{4} to get 0.
-4x^{3}+4x^{2}-4x+1-1-\left(x^{2}-2x\right)^{2}
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
-4x^{3}+4x^{2}-4x-\left(x^{2}-2x\right)^{2}
Subtract 1 from 1 to get 0.
-4x^{3}+4x^{2}-4x-\left(\left(x^{2}\right)^{2}-4x^{2}x+4x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2x\right)^{2}.
-4x^{3}+4x^{2}-4x-\left(x^{4}-4x^{2}x+4x^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-4x^{3}+4x^{2}-4x-\left(x^{4}-4x^{3}+4x^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-4x^{3}+4x^{2}-4x-x^{4}+4x^{3}-4x^{2}
To find the opposite of x^{4}-4x^{3}+4x^{2}, find the opposite of each term.
4x^{2}-4x-x^{4}-4x^{2}
Combine -4x^{3} and 4x^{3} to get 0.
-4x-x^{4}
Combine 4x^{2} and -4x^{2} to get 0.
\left(x^{2}+2x+1-4x\right)^{2}-\left(x^{2}+1\right)^{2}-\left(x^{2}-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x^{2}-2x+1\right)^{2}-\left(x^{2}+1\right)^{2}-\left(x^{2}-2x\right)^{2}
Combine 2x and -4x to get -2x.
x^{4}-4x^{3}+6x^{2}-4x+1-\left(x^{2}+1\right)^{2}-\left(x^{2}-2x\right)^{2}
Square x^{2}-2x+1.
x^{4}-4x^{3}+6x^{2}-4x+1-\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)-\left(x^{2}-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}-4x^{3}+6x^{2}-4x+1-\left(x^{4}+2x^{2}+1\right)-\left(x^{2}-2x\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-4x^{3}+6x^{2}-4x+1-x^{4}-2x^{2}-1-\left(x^{2}-2x\right)^{2}
To find the opposite of x^{4}+2x^{2}+1, find the opposite of each term.
-4x^{3}+6x^{2}-4x+1-2x^{2}-1-\left(x^{2}-2x\right)^{2}
Combine x^{4} and -x^{4} to get 0.
-4x^{3}+4x^{2}-4x+1-1-\left(x^{2}-2x\right)^{2}
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
-4x^{3}+4x^{2}-4x-\left(x^{2}-2x\right)^{2}
Subtract 1 from 1 to get 0.
-4x^{3}+4x^{2}-4x-\left(\left(x^{2}\right)^{2}-4x^{2}x+4x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2x\right)^{2}.
-4x^{3}+4x^{2}-4x-\left(x^{4}-4x^{2}x+4x^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-4x^{3}+4x^{2}-4x-\left(x^{4}-4x^{3}+4x^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-4x^{3}+4x^{2}-4x-x^{4}+4x^{3}-4x^{2}
To find the opposite of x^{4}-4x^{3}+4x^{2}, find the opposite of each term.
4x^{2}-4x-x^{4}-4x^{2}
Combine -4x^{3} and 4x^{3} to get 0.
-4x-x^{4}
Combine 4x^{2} and -4x^{2} to get 0.