Solve for m
m=-3
m=4
Share
Copied to clipboard
\left(2m+2-3\right)^{2}-\left(m+2-\left(m-3\right)\right)^{2}=24
Combine m and m to get 2m.
\left(2m-1\right)^{2}-\left(m+2-\left(m-3\right)\right)^{2}=24
Subtract 3 from 2 to get -1.
4m^{2}-4m+1-\left(m+2-\left(m-3\right)\right)^{2}=24
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-1\right)^{2}.
4m^{2}-4m+1-\left(m+2-m+3\right)^{2}=24
To find the opposite of m-3, find the opposite of each term.
4m^{2}-4m+1-\left(2+3\right)^{2}=24
Combine m and -m to get 0.
4m^{2}-4m+1-5^{2}=24
Add 2 and 3 to get 5.
4m^{2}-4m+1-25=24
Calculate 5 to the power of 2 and get 25.
4m^{2}-4m-24=24
Subtract 25 from 1 to get -24.
4m^{2}-4m-24-24=0
Subtract 24 from both sides.
4m^{2}-4m-48=0
Subtract 24 from -24 to get -48.
m^{2}-m-12=0
Divide both sides by 4.
a+b=-1 ab=1\left(-12\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as m^{2}+am+bm-12. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-4 b=3
The solution is the pair that gives sum -1.
\left(m^{2}-4m\right)+\left(3m-12\right)
Rewrite m^{2}-m-12 as \left(m^{2}-4m\right)+\left(3m-12\right).
m\left(m-4\right)+3\left(m-4\right)
Factor out m in the first and 3 in the second group.
\left(m-4\right)\left(m+3\right)
Factor out common term m-4 by using distributive property.
m=4 m=-3
To find equation solutions, solve m-4=0 and m+3=0.
\left(2m+2-3\right)^{2}-\left(m+2-\left(m-3\right)\right)^{2}=24
Combine m and m to get 2m.
\left(2m-1\right)^{2}-\left(m+2-\left(m-3\right)\right)^{2}=24
Subtract 3 from 2 to get -1.
4m^{2}-4m+1-\left(m+2-\left(m-3\right)\right)^{2}=24
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-1\right)^{2}.
4m^{2}-4m+1-\left(m+2-m+3\right)^{2}=24
To find the opposite of m-3, find the opposite of each term.
4m^{2}-4m+1-\left(2+3\right)^{2}=24
Combine m and -m to get 0.
4m^{2}-4m+1-5^{2}=24
Add 2 and 3 to get 5.
4m^{2}-4m+1-25=24
Calculate 5 to the power of 2 and get 25.
4m^{2}-4m-24=24
Subtract 25 from 1 to get -24.
4m^{2}-4m-24-24=0
Subtract 24 from both sides.
4m^{2}-4m-48=0
Subtract 24 from -24 to get -48.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-48\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-48\right)}}{2\times 4}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16-16\left(-48\right)}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 4}
Multiply -16 times -48.
m=\frac{-\left(-4\right)±\sqrt{784}}{2\times 4}
Add 16 to 768.
m=\frac{-\left(-4\right)±28}{2\times 4}
Take the square root of 784.
m=\frac{4±28}{2\times 4}
The opposite of -4 is 4.
m=\frac{4±28}{8}
Multiply 2 times 4.
m=\frac{32}{8}
Now solve the equation m=\frac{4±28}{8} when ± is plus. Add 4 to 28.
m=4
Divide 32 by 8.
m=-\frac{24}{8}
Now solve the equation m=\frac{4±28}{8} when ± is minus. Subtract 28 from 4.
m=-3
Divide -24 by 8.
m=4 m=-3
The equation is now solved.
\left(2m+2-3\right)^{2}-\left(m+2-\left(m-3\right)\right)^{2}=24
Combine m and m to get 2m.
\left(2m-1\right)^{2}-\left(m+2-\left(m-3\right)\right)^{2}=24
Subtract 3 from 2 to get -1.
4m^{2}-4m+1-\left(m+2-\left(m-3\right)\right)^{2}=24
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-1\right)^{2}.
4m^{2}-4m+1-\left(m+2-m+3\right)^{2}=24
To find the opposite of m-3, find the opposite of each term.
4m^{2}-4m+1-\left(2+3\right)^{2}=24
Combine m and -m to get 0.
4m^{2}-4m+1-5^{2}=24
Add 2 and 3 to get 5.
4m^{2}-4m+1-25=24
Calculate 5 to the power of 2 and get 25.
4m^{2}-4m-24=24
Subtract 25 from 1 to get -24.
4m^{2}-4m=24+24
Add 24 to both sides.
4m^{2}-4m=48
Add 24 and 24 to get 48.
\frac{4m^{2}-4m}{4}=\frac{48}{4}
Divide both sides by 4.
m^{2}+\left(-\frac{4}{4}\right)m=\frac{48}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-m=\frac{48}{4}
Divide -4 by 4.
m^{2}-m=12
Divide 48 by 4.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=12+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=\frac{49}{4}
Add 12 to \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{49}{4}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{7}{2} m-\frac{1}{2}=-\frac{7}{2}
Simplify.
m=4 m=-3
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}