Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a-1 by each term of a-2.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -2a and -a to get -3a.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}-3a+2 by each term of a-3.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -3a^{2} and -3a^{2} to get -6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a+1 by each term of a+2.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}
Combine 2a and a to get 3a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}+3a+2 by each term of a+3.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}
Combine 3a^{2} and 3a^{2} to get 6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}
To find the opposite of a^{3}+6a^{2}+11a+6, find the opposite of each term.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}
Combine a^{3} and -a^{3} to get 0.
\frac{-12a^{2}+11a-6-11a-6}{-4}
Combine -6a^{2} and -6a^{2} to get -12a^{2}.
\frac{-12a^{2}-6-6}{-4}
Combine 11a and -11a to get 0.
\frac{-12a^{2}-12}{-4}
Subtract 6 from -6 to get -12.
\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a-1 by each term of a-2.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -2a and -a to get -3a.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}-3a+2 by each term of a-3.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -3a^{2} and -3a^{2} to get -6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a+1 by each term of a+2.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}
Combine 2a and a to get 3a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}+3a+2 by each term of a+3.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}
Combine 3a^{2} and 3a^{2} to get 6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}
To find the opposite of a^{3}+6a^{2}+11a+6, find the opposite of each term.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}
Combine a^{3} and -a^{3} to get 0.
\frac{-12a^{2}+11a-6-11a-6}{-4}
Combine -6a^{2} and -6a^{2} to get -12a^{2}.
\frac{-12a^{2}-6-6}{-4}
Combine 11a and -11a to get 0.
\frac{-12a^{2}-12}{-4}
Subtract 6 from -6 to get -12.