Evaluate
3\left(a^{2}+1\right)
Expand
3a^{2}+3
Share
Copied to clipboard
\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a-1 by each term of a-2.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -2a and -a to get -3a.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}-3a+2 by each term of a-3.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -3a^{2} and -3a^{2} to get -6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a+1 by each term of a+2.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}
Combine 2a and a to get 3a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}+3a+2 by each term of a+3.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}
Combine 3a^{2} and 3a^{2} to get 6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}
To find the opposite of a^{3}+6a^{2}+11a+6, find the opposite of each term.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}
Combine a^{3} and -a^{3} to get 0.
\frac{-12a^{2}+11a-6-11a-6}{-4}
Combine -6a^{2} and -6a^{2} to get -12a^{2}.
\frac{-12a^{2}-6-6}{-4}
Combine 11a and -11a to get 0.
\frac{-12a^{2}-12}{-4}
Subtract 6 from -6 to get -12.
\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a-1 by each term of a-2.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -2a and -a to get -3a.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}-3a+2 by each term of a-3.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine -3a^{2} and -3a^{2} to get -6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}
Apply the distributive property by multiplying each term of a+1 by each term of a+2.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}
Combine 2a and a to get 3a.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}
Apply the distributive property by multiplying each term of a^{2}+3a+2 by each term of a+3.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}
Combine 3a^{2} and 3a^{2} to get 6a^{2}.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}
Combine 9a and 2a to get 11a.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}
To find the opposite of a^{3}+6a^{2}+11a+6, find the opposite of each term.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}
Combine a^{3} and -a^{3} to get 0.
\frac{-12a^{2}+11a-6-11a-6}{-4}
Combine -6a^{2} and -6a^{2} to get -12a^{2}.
\frac{-12a^{2}-6-6}{-4}
Combine 11a and -11a to get 0.
\frac{-12a^{2}-12}{-4}
Subtract 6 from -6 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}