Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{9}\left(a^{4}\right)^{3}}{\left(a^{3}\right)^{2}}}{\left(a^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\frac{a^{9}a^{12}}{\left(a^{3}\right)^{2}}}{\left(a^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{\frac{a^{21}}{\left(a^{3}\right)^{2}}}{\left(a^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
\frac{\frac{a^{21}}{a^{6}}}{\left(a^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{a^{15}}{\left(a^{2}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 6 from 21 to get 15.
\frac{a^{15}}{a^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 6 from 15 to get 9.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{9}\left(a^{4}\right)^{3}}{\left(a^{3}\right)^{2}}}{\left(a^{2}\right)^{3}})
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{9}a^{12}}{\left(a^{3}\right)^{2}}}{\left(a^{2}\right)^{3}})
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{21}}{\left(a^{3}\right)^{2}}}{\left(a^{2}\right)^{3}})
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{21}}{a^{6}}}{\left(a^{2}\right)^{3}})
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{15}}{\left(a^{2}\right)^{3}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 6 from 21 to get 15.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{15}}{a^{6}})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{9})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 6 from 15 to get 9.
9a^{9-1}
The derivative of ax^{n} is nax^{n-1}.
9a^{8}
Subtract 1 from 9.