Verify
true
Share
Copied to clipboard
\frac{\frac{21}{3}-\frac{1}{3}-1}{\left(\frac{7}{15}-\frac{3}{8}\times \frac{4}{5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Convert 7 to fraction \frac{21}{3}.
\frac{\frac{21-1}{3}-1}{\left(\frac{7}{15}-\frac{3}{8}\times \frac{4}{5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Since \frac{21}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{20}{3}-1}{\left(\frac{7}{15}-\frac{3}{8}\times \frac{4}{5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Subtract 1 from 21 to get 20.
\frac{\frac{20}{3}-\frac{3}{3}}{\left(\frac{7}{15}-\frac{3}{8}\times \frac{4}{5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{20-3}{3}}{\left(\frac{7}{15}-\frac{3}{8}\times \frac{4}{5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Since \frac{20}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{17}{3}}{\left(\frac{7}{15}-\frac{3}{8}\times \frac{4}{5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Subtract 3 from 20 to get 17.
\frac{\frac{17}{3}}{\left(\frac{7}{15}-\frac{3\times 4}{8\times 5}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Multiply \frac{3}{8} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{17}{3}}{\left(\frac{7}{15}-\frac{12}{40}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Do the multiplications in the fraction \frac{3\times 4}{8\times 5}.
\frac{\frac{17}{3}}{\left(\frac{7}{15}-\frac{3}{10}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Reduce the fraction \frac{12}{40} to lowest terms by extracting and canceling out 4.
\frac{\frac{17}{3}}{\left(\frac{14}{30}-\frac{9}{30}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Least common multiple of 15 and 10 is 30. Convert \frac{7}{15} and \frac{3}{10} to fractions with denominator 30.
\frac{\frac{17}{3}}{\left(\frac{14-9}{30}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Since \frac{14}{30} and \frac{9}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{17}{3}}{\left(\frac{5}{30}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Subtract 9 from 14 to get 5.
\frac{\frac{17}{3}}{\left(\frac{1}{6}+\frac{1}{3}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Reduce the fraction \frac{5}{30} to lowest terms by extracting and canceling out 5.
\frac{\frac{17}{3}}{\left(\frac{1}{6}+\frac{2}{6}\right)\times \frac{9}{4}+1}=\frac{5}{3}+1
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{17}{3}}{\frac{1+2}{6}\times \frac{9}{4}+1}=\frac{5}{3}+1
Since \frac{1}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{3}}{\frac{3}{6}\times \frac{9}{4}+1}=\frac{5}{3}+1
Add 1 and 2 to get 3.
\frac{\frac{17}{3}}{\frac{1}{2}\times \frac{9}{4}+1}=\frac{5}{3}+1
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{17}{3}}{\frac{1\times 9}{2\times 4}+1}=\frac{5}{3}+1
Multiply \frac{1}{2} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{17}{3}}{\frac{9}{8}+1}=\frac{5}{3}+1
Do the multiplications in the fraction \frac{1\times 9}{2\times 4}.
\frac{\frac{17}{3}}{\frac{9}{8}+\frac{8}{8}}=\frac{5}{3}+1
Convert 1 to fraction \frac{8}{8}.
\frac{\frac{17}{3}}{\frac{9+8}{8}}=\frac{5}{3}+1
Since \frac{9}{8} and \frac{8}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{3}}{\frac{17}{8}}=\frac{5}{3}+1
Add 9 and 8 to get 17.
\frac{17}{3}\times \frac{8}{17}=\frac{5}{3}+1
Divide \frac{17}{3} by \frac{17}{8} by multiplying \frac{17}{3} by the reciprocal of \frac{17}{8}.
\frac{17\times 8}{3\times 17}=\frac{5}{3}+1
Multiply \frac{17}{3} times \frac{8}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{3}=\frac{5}{3}+1
Cancel out 17 in both numerator and denominator.
\frac{8}{3}=\frac{5}{3}+\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{8}{3}=\frac{5+3}{3}
Since \frac{5}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{8}{3}=\frac{8}{3}
Add 5 and 3 to get 8.
\text{true}
Compare \frac{8}{3} and \frac{8}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}