Evaluate
\frac{16000}{11}\approx 1454.545454545
Factor
\frac{2 ^ {7} \cdot 5 ^ {3}}{11} = 1454\frac{6}{11} = 1454.5454545454545
Share
Copied to clipboard
\left(\left(5-\frac{4+1}{2}\right)\times 20-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Multiply 2 and 2 to get 4.
\left(\left(5-\frac{5}{2}\right)\times 20-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Add 4 and 1 to get 5.
\left(\left(\frac{10}{2}-\frac{5}{2}\right)\times 20-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Convert 5 to fraction \frac{10}{2}.
\left(\frac{10-5}{2}\times 20-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Since \frac{10}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{5}{2}\times 20-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Subtract 5 from 10 to get 5.
\left(\frac{5\times 20}{2}-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Express \frac{5}{2}\times 20 as a single fraction.
\left(\frac{100}{2}-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Multiply 5 and 20 to get 100.
\left(50-\frac{\frac{4\times 2+1}{2}}{\frac{99}{100}}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Divide 100 by 2 to get 50.
\left(50-\frac{\left(4\times 2+1\right)\times 100}{2\times 99}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Divide \frac{4\times 2+1}{2} by \frac{99}{100} by multiplying \frac{4\times 2+1}{2} by the reciprocal of \frac{99}{100}.
\left(50-\frac{50\left(1+2\times 4\right)}{99}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Cancel out 2 in both numerator and denominator.
\left(50-\frac{50\left(1+8\right)}{99}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Multiply 2 and 4 to get 8.
\left(50-\frac{50\times 9}{99}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Add 1 and 8 to get 9.
\left(50-\frac{450}{99}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Multiply 50 and 9 to get 450.
\left(50-\frac{50}{11}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Reduce the fraction \frac{450}{99} to lowest terms by extracting and canceling out 9.
\left(\frac{550}{11}-\frac{50}{11}\right)\times 32+\frac{0\times 24}{\frac{1}{5}}
Convert 50 to fraction \frac{550}{11}.
\frac{550-50}{11}\times 32+\frac{0\times 24}{\frac{1}{5}}
Since \frac{550}{11} and \frac{50}{11} have the same denominator, subtract them by subtracting their numerators.
\frac{500}{11}\times 32+\frac{0\times 24}{\frac{1}{5}}
Subtract 50 from 550 to get 500.
\frac{500\times 32}{11}+\frac{0\times 24}{\frac{1}{5}}
Express \frac{500}{11}\times 32 as a single fraction.
\frac{16000}{11}+\frac{0\times 24}{\frac{1}{5}}
Multiply 500 and 32 to get 16000.
\frac{16000}{11}+\frac{0}{\frac{1}{5}}
Multiply 0 and 24 to get 0.
\frac{16000}{11}+0
Zero divided by any non-zero number gives zero.
\frac{16000}{11}
Add \frac{16000}{11} and 0 to get \frac{16000}{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}