Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\frac{60+7}{12}-\frac{3\times 36+17}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Multiply 5 and 12 to get 60.
\left(\left(\frac{67}{12}-\frac{3\times 36+17}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Add 60 and 7 to get 67.
\left(\left(\frac{67}{12}-\frac{108+17}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Multiply 3 and 36 to get 108.
\left(\left(\frac{67}{12}-\frac{125}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Add 108 and 17 to get 125.
\left(\left(\frac{201}{36}-\frac{125}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Least common multiple of 12 and 36 is 36. Convert \frac{67}{12} and \frac{125}{36} to fractions with denominator 36.
\left(\frac{201-125}{36}\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Since \frac{201}{36} and \frac{125}{36} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{76}{36}\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Subtract 125 from 201 to get 76.
\left(\frac{19}{9}\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Reduce the fraction \frac{76}{36} to lowest terms by extracting and canceling out 4.
\left(\frac{19}{9}\times \frac{4+1}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Multiply 2 and 2 to get 4.
\left(\frac{19}{9}\times \frac{5}{2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Add 4 and 1 to get 5.
\left(\frac{19\times 5}{9\times 2}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Multiply \frac{19}{9} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{95}{18}-\frac{4\times 3+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{19\times 5}{9\times 2}.
\left(\frac{95}{18}-\frac{12+1}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Multiply 4 and 3 to get 12.
\left(\frac{95}{18}-\frac{13}{3}\times \frac{3}{26}\right)\times \frac{1}{2}
Add 12 and 1 to get 13.
\left(\frac{95}{18}-\frac{13\times 3}{3\times 26}\right)\times \frac{1}{2}
Multiply \frac{13}{3} times \frac{3}{26} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{95}{18}-\frac{13}{26}\right)\times \frac{1}{2}
Cancel out 3 in both numerator and denominator.
\left(\frac{95}{18}-\frac{1}{2}\right)\times \frac{1}{2}
Reduce the fraction \frac{13}{26} to lowest terms by extracting and canceling out 13.
\left(\frac{95}{18}-\frac{9}{18}\right)\times \frac{1}{2}
Least common multiple of 18 and 2 is 18. Convert \frac{95}{18} and \frac{1}{2} to fractions with denominator 18.
\frac{95-9}{18}\times \frac{1}{2}
Since \frac{95}{18} and \frac{9}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{86}{18}\times \frac{1}{2}
Subtract 9 from 95 to get 86.
\frac{43}{9}\times \frac{1}{2}
Reduce the fraction \frac{86}{18} to lowest terms by extracting and canceling out 2.
\frac{43\times 1}{9\times 2}
Multiply \frac{43}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{43}{18}
Do the multiplications in the fraction \frac{43\times 1}{9\times 2}.