Solve for a
a=11
Solve for a (complex solution)
a=\frac{2\pi n_{1}i}{\ln(5)}+11
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
\frac{5^{8}\times 5^{3^{2}}}{\left(5^{3}\right)^{2}}=5^{a}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{5^{8}\times 5^{3^{2}}}{5^{6}}=5^{a}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
5^{2}\times 5^{3^{2}}=5^{a}
Cancel out 5^{6} in both numerator and denominator.
25\times 5^{3^{2}}=5^{a}
Calculate 5 to the power of 2 and get 25.
25\times 5^{9}=5^{a}
Calculate 3 to the power of 2 and get 9.
25\times 1953125=5^{a}
Calculate 5 to the power of 9 and get 1953125.
48828125=5^{a}
Multiply 25 and 1953125 to get 48828125.
5^{a}=48828125
Swap sides so that all variable terms are on the left hand side.
\log(5^{a})=\log(48828125)
Take the logarithm of both sides of the equation.
a\log(5)=\log(48828125)
The logarithm of a number raised to a power is the power times the logarithm of the number.
a=\frac{\log(48828125)}{\log(5)}
Divide both sides by \log(5).
a=\log_{5}\left(48828125\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}