Evaluate
\frac{1313}{198}\approx 6.631313131
Factor
\frac{13 \cdot 101}{2 \cdot 3 ^ {2} \cdot 11} = 6\frac{125}{198} = 6.6313131313131315
Share
Copied to clipboard
\frac{\left(\frac{28+5}{7}+\frac{1\times 14+11}{14}\right)\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply 4 and 7 to get 28.
\frac{\left(\frac{33}{7}+\frac{1\times 14+11}{14}\right)\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Add 28 and 5 to get 33.
\frac{\left(\frac{33}{7}+\frac{14+11}{14}\right)\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply 1 and 14 to get 14.
\frac{\left(\frac{33}{7}+\frac{25}{14}\right)\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Add 14 and 11 to get 25.
\frac{\left(\frac{66}{14}+\frac{25}{14}\right)\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Least common multiple of 7 and 14 is 14. Convert \frac{33}{7} and \frac{25}{14} to fractions with denominator 14.
\frac{\frac{66+25}{14}\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Since \frac{66}{14} and \frac{25}{14} have the same denominator, add them by adding their numerators.
\frac{\frac{91}{14}\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Add 66 and 25 to get 91.
\frac{\frac{13}{2}\times \frac{2\times 3+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Reduce the fraction \frac{91}{14} to lowest terms by extracting and canceling out 7.
\frac{\frac{13}{2}\times \frac{6+2}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply 2 and 3 to get 6.
\frac{\frac{13}{2}\times \frac{8}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Add 6 and 2 to get 8.
\frac{\frac{13\times 8}{2\times 3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply \frac{13}{2} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{104}{6}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Do the multiplications in the fraction \frac{13\times 8}{2\times 3}.
\frac{\frac{52}{3}+\frac{\frac{3\times 9+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Reduce the fraction \frac{104}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{52}{3}+\frac{\frac{27+2}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply 3 and 9 to get 27.
\frac{\frac{52}{3}+\frac{\frac{29}{9}-\frac{1\times 6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Add 27 and 2 to get 29.
\frac{\frac{52}{3}+\frac{\frac{29}{9}-\frac{6+5}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply 1 and 6 to get 6.
\frac{\frac{52}{3}+\frac{\frac{29}{9}-\frac{11}{6}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Add 6 and 5 to get 11.
\frac{\frac{52}{3}+\frac{\frac{58}{18}-\frac{33}{18}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Least common multiple of 9 and 6 is 18. Convert \frac{29}{9} and \frac{11}{6} to fractions with denominator 18.
\frac{\frac{52}{3}+\frac{\frac{58-33}{18}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Since \frac{58}{18} and \frac{33}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{52}{3}+\frac{\frac{25}{18}}{\frac{1\times 13+7}{13}}}{\frac{2\times 4+3}{4}}
Subtract 33 from 58 to get 25.
\frac{\frac{52}{3}+\frac{\frac{25}{18}}{\frac{13+7}{13}}}{\frac{2\times 4+3}{4}}
Multiply 1 and 13 to get 13.
\frac{\frac{52}{3}+\frac{\frac{25}{18}}{\frac{20}{13}}}{\frac{2\times 4+3}{4}}
Add 13 and 7 to get 20.
\frac{\frac{52}{3}+\frac{25}{18}\times \frac{13}{20}}{\frac{2\times 4+3}{4}}
Divide \frac{25}{18} by \frac{20}{13} by multiplying \frac{25}{18} by the reciprocal of \frac{20}{13}.
\frac{\frac{52}{3}+\frac{25\times 13}{18\times 20}}{\frac{2\times 4+3}{4}}
Multiply \frac{25}{18} times \frac{13}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{52}{3}+\frac{325}{360}}{\frac{2\times 4+3}{4}}
Do the multiplications in the fraction \frac{25\times 13}{18\times 20}.
\frac{\frac{52}{3}+\frac{65}{72}}{\frac{2\times 4+3}{4}}
Reduce the fraction \frac{325}{360} to lowest terms by extracting and canceling out 5.
\frac{\frac{1248}{72}+\frac{65}{72}}{\frac{2\times 4+3}{4}}
Least common multiple of 3 and 72 is 72. Convert \frac{52}{3} and \frac{65}{72} to fractions with denominator 72.
\frac{\frac{1248+65}{72}}{\frac{2\times 4+3}{4}}
Since \frac{1248}{72} and \frac{65}{72} have the same denominator, add them by adding their numerators.
\frac{\frac{1313}{72}}{\frac{2\times 4+3}{4}}
Add 1248 and 65 to get 1313.
\frac{\frac{1313}{72}}{\frac{8+3}{4}}
Multiply 2 and 4 to get 8.
\frac{\frac{1313}{72}}{\frac{11}{4}}
Add 8 and 3 to get 11.
\frac{1313}{72}\times \frac{4}{11}
Divide \frac{1313}{72} by \frac{11}{4} by multiplying \frac{1313}{72} by the reciprocal of \frac{11}{4}.
\frac{1313\times 4}{72\times 11}
Multiply \frac{1313}{72} times \frac{4}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{5252}{792}
Do the multiplications in the fraction \frac{1313\times 4}{72\times 11}.
\frac{1313}{198}
Reduce the fraction \frac{5252}{792} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}