Evaluate
4y
Expand
4y
Share
Copied to clipboard
\frac{\left(-2y\right)^{2}\times 2x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Combine 3y and -5y to get -2y.
\frac{\left(-2\right)^{2}y^{2}\times 2x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Expand \left(-2y\right)^{2}.
\frac{4y^{2}\times 2x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Calculate -2 to the power of 2 and get 4.
\frac{8y^{2}x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Multiply 4 and 2 to get 8.
\frac{8y^{5}x^{2}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{8y^{5}x^{2}}{\left(-\frac{1}{2}\right)^{2}x^{2}\left(y^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Expand \left(-\frac{1}{2}xy^{2}\right)^{2}.
\frac{8y^{5}x^{2}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{4}}-\left(20y-\left(-8y\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{8y^{5}x^{2}}{\frac{1}{4}x^{2}y^{4}}-\left(20y-\left(-8y\right)\right)
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{8y}{\frac{1}{4}}-\left(20y-\left(-8y\right)\right)
Cancel out x^{2}y^{4} in both numerator and denominator.
8y\times 4-\left(20y-\left(-8y\right)\right)
Divide 8y by \frac{1}{4} by multiplying 8y by the reciprocal of \frac{1}{4}.
8y\times 4-\left(20y+8y\right)
The opposite of -8y is 8y.
8y\times 4-28y
Combine 20y and 8y to get 28y.
32y-28y
Multiply 8 and 4 to get 32.
4y
Combine 32y and -28y to get 4y.
\frac{\left(-2y\right)^{2}\times 2x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Combine 3y and -5y to get -2y.
\frac{\left(-2\right)^{2}y^{2}\times 2x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Expand \left(-2y\right)^{2}.
\frac{4y^{2}\times 2x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Calculate -2 to the power of 2 and get 4.
\frac{8y^{2}x^{2}y^{3}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Multiply 4 and 2 to get 8.
\frac{8y^{5}x^{2}}{\left(-\frac{1}{2}xy^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{8y^{5}x^{2}}{\left(-\frac{1}{2}\right)^{2}x^{2}\left(y^{2}\right)^{2}}-\left(20y-\left(-8y\right)\right)
Expand \left(-\frac{1}{2}xy^{2}\right)^{2}.
\frac{8y^{5}x^{2}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{4}}-\left(20y-\left(-8y\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{8y^{5}x^{2}}{\frac{1}{4}x^{2}y^{4}}-\left(20y-\left(-8y\right)\right)
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{8y}{\frac{1}{4}}-\left(20y-\left(-8y\right)\right)
Cancel out x^{2}y^{4} in both numerator and denominator.
8y\times 4-\left(20y-\left(-8y\right)\right)
Divide 8y by \frac{1}{4} by multiplying 8y by the reciprocal of \frac{1}{4}.
8y\times 4-\left(20y+8y\right)
The opposite of -8y is 8y.
8y\times 4-28y
Combine 20y and 8y to get 28y.
32y-28y
Multiply 8 and 4 to get 32.
4y
Combine 32y and -28y to get 4y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}