Evaluate
\frac{2\left(xy\right)^{3}}{3}
Expand
\frac{2\left(xy\right)^{3}}{3}
Share
Copied to clipboard
\left(\frac{\left(\frac{1}{2}x^{2}y\right)^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Combine 3x^{2}y and -\frac{5}{2}x^{2}y to get \frac{1}{2}x^{2}y.
\left(\frac{\left(\frac{1}{2}\right)^{3}\left(x^{2}\right)^{3}y^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Expand \left(\frac{1}{2}x^{2}y\right)^{3}.
\left(\frac{\left(\frac{1}{2}\right)^{3}x^{6}y^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(\frac{\frac{1}{8}x^{6}y^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\left(\frac{\frac{1}{8}yx^{2}}{-\frac{1}{4}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Cancel out y^{2}x^{4} in both numerator and denominator.
\left(\frac{\frac{1}{8}yx^{2}\times 4}{-1}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Divide \frac{1}{8}yx^{2} by -\frac{1}{4} by multiplying \frac{1}{8}yx^{2} by the reciprocal of -\frac{1}{4}.
\left(\frac{\frac{1}{2}yx^{2}}{-1}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Multiply \frac{1}{8} and 4 to get \frac{1}{2}.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Anything divided by -1 gives its opposite.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(xy\right)^{2}
Combine \frac{5}{6}xy and \frac{1}{6}xy to get xy.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xyx^{2}y^{2}
Expand \left(xy\right)^{2}.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}x^{3}yy^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}x^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-1\right)x^{2}\right)\left(-1\right)xy^{2}+\frac{1}{2}x^{3}y^{3}
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
\left(-\frac{1}{2}yx^{2}+\frac{1}{3}yx^{2}\right)\left(-1\right)xy^{2}+\frac{1}{2}x^{3}y^{3}
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
-\frac{1}{6}yx^{2}\left(-1\right)xy^{2}+\frac{1}{2}x^{3}y^{3}
Combine -\frac{1}{2}yx^{2} and \frac{1}{3}yx^{2} to get -\frac{1}{6}yx^{2}.
\frac{1}{6}yx^{2}xy^{2}+\frac{1}{2}x^{3}y^{3}
Multiply -\frac{1}{6} and -1 to get \frac{1}{6}.
\frac{1}{6}yx^{3}y^{2}+\frac{1}{2}x^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{6}y^{3}x^{3}+\frac{1}{2}x^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2}{3}y^{3}x^{3}
Combine \frac{1}{6}y^{3}x^{3} and \frac{1}{2}x^{3}y^{3} to get \frac{2}{3}y^{3}x^{3}.
\left(\frac{\left(\frac{1}{2}x^{2}y\right)^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Combine 3x^{2}y and -\frac{5}{2}x^{2}y to get \frac{1}{2}x^{2}y.
\left(\frac{\left(\frac{1}{2}\right)^{3}\left(x^{2}\right)^{3}y^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Expand \left(\frac{1}{2}x^{2}y\right)^{3}.
\left(\frac{\left(\frac{1}{2}\right)^{3}x^{6}y^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(\frac{\frac{1}{8}x^{6}y^{3}}{-\frac{1}{4}x^{4}y^{2}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\left(\frac{\frac{1}{8}yx^{2}}{-\frac{1}{4}}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Cancel out y^{2}x^{4} in both numerator and denominator.
\left(\frac{\frac{1}{8}yx^{2}\times 4}{-1}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Divide \frac{1}{8}yx^{2} by -\frac{1}{4} by multiplying \frac{1}{8}yx^{2} by the reciprocal of -\frac{1}{4}.
\left(\frac{\frac{1}{2}yx^{2}}{-1}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Multiply \frac{1}{8} and 4 to get \frac{1}{2}.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(\frac{5}{6}xy+\frac{1}{6}xy\right)^{2}
Anything divided by -1 gives its opposite.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xy\left(xy\right)^{2}
Combine \frac{5}{6}xy and \frac{1}{6}xy to get xy.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}xyx^{2}y^{2}
Expand \left(xy\right)^{2}.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}x^{3}yy^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-x^{2}\right)\right)\left(-x\right)y^{2}+\frac{1}{2}x^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-\frac{1}{2}yx^{2}-\frac{1}{3}y\left(-1\right)x^{2}\right)\left(-1\right)xy^{2}+\frac{1}{2}x^{3}y^{3}
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
\left(-\frac{1}{2}yx^{2}+\frac{1}{3}yx^{2}\right)\left(-1\right)xy^{2}+\frac{1}{2}x^{3}y^{3}
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
-\frac{1}{6}yx^{2}\left(-1\right)xy^{2}+\frac{1}{2}x^{3}y^{3}
Combine -\frac{1}{2}yx^{2} and \frac{1}{3}yx^{2} to get -\frac{1}{6}yx^{2}.
\frac{1}{6}yx^{2}xy^{2}+\frac{1}{2}x^{3}y^{3}
Multiply -\frac{1}{6} and -1 to get \frac{1}{6}.
\frac{1}{6}yx^{3}y^{2}+\frac{1}{2}x^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{6}y^{3}x^{3}+\frac{1}{2}x^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2}{3}y^{3}x^{3}
Combine \frac{1}{6}y^{3}x^{3} and \frac{1}{2}x^{3}y^{3} to get \frac{2}{3}y^{3}x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}