Evaluate
\frac{46}{3}\approx 15.333333333
Factor
\frac{2 \cdot 23}{3} = 15\frac{1}{3} = 15.333333333333334
Share
Copied to clipboard
\frac{\frac{12+1}{4}-\frac{4\times 3+1}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Multiply 3 and 4 to get 12.
\frac{\frac{13}{4}-\frac{4\times 3+1}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Add 12 and 1 to get 13.
\frac{\frac{13}{4}-\frac{12+1}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Multiply 4 and 3 to get 12.
\frac{\frac{13}{4}-\frac{13}{3}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Add 12 and 1 to get 13.
\frac{\frac{39}{12}-\frac{52}{12}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Least common multiple of 4 and 3 is 12. Convert \frac{13}{4} and \frac{13}{3} to fractions with denominator 12.
\frac{\frac{39-52}{12}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Since \frac{39}{12} and \frac{52}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{13}{12}-\frac{5}{6}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Subtract 52 from 39 to get -13.
\frac{-\frac{13}{12}-\frac{10}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Least common multiple of 12 and 6 is 12. Convert -\frac{13}{12} and \frac{5}{6} to fractions with denominator 12.
\frac{\frac{-13-10}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Since -\frac{13}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{2\times 3+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Subtract 10 from -13 to get -23.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{6+1}{3}+1-\frac{1\times 4+1}{4}\right)}
Multiply 2 and 3 to get 6.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{7}{3}+1-\frac{1\times 4+1}{4}\right)}
Add 6 and 1 to get 7.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{7}{3}+\frac{3}{3}-\frac{1\times 4+1}{4}\right)}
Convert 1 to fraction \frac{3}{3}.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{7+3}{3}-\frac{1\times 4+1}{4}\right)}
Since \frac{7}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{10}{3}-\frac{1\times 4+1}{4}\right)}
Add 7 and 3 to get 10.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{10}{3}-\frac{4+1}{4}\right)}
Multiply 1 and 4 to get 4.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{10}{3}-\frac{5}{4}\right)}
Add 4 and 1 to get 5.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\left(\frac{40}{12}-\frac{15}{12}\right)}
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\times \frac{40-15}{12}}
Since \frac{40}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1}{2}\times \frac{25}{12}}
Subtract 15 from 40 to get 25.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{1\times 25}{2\times 12}}
Multiply \frac{1}{2} times \frac{25}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{23}{12}}{\frac{11}{12}-\frac{25}{24}}
Do the multiplications in the fraction \frac{1\times 25}{2\times 12}.
\frac{-\frac{23}{12}}{\frac{22}{24}-\frac{25}{24}}
Least common multiple of 12 and 24 is 24. Convert \frac{11}{12} and \frac{25}{24} to fractions with denominator 24.
\frac{-\frac{23}{12}}{\frac{22-25}{24}}
Since \frac{22}{24} and \frac{25}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{23}{12}}{\frac{-3}{24}}
Subtract 25 from 22 to get -3.
\frac{-\frac{23}{12}}{-\frac{1}{8}}
Reduce the fraction \frac{-3}{24} to lowest terms by extracting and canceling out 3.
-\frac{23}{12}\left(-8\right)
Divide -\frac{23}{12} by -\frac{1}{8} by multiplying -\frac{23}{12} by the reciprocal of -\frac{1}{8}.
\frac{-23\left(-8\right)}{12}
Express -\frac{23}{12}\left(-8\right) as a single fraction.
\frac{184}{12}
Multiply -23 and -8 to get 184.
\frac{46}{3}
Reduce the fraction \frac{184}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}