Evaluate
\frac{173419}{21952}\approx 7.899918003
Factor
\frac{37 \cdot 43 \cdot 109}{2 ^ {6} \cdot 7 ^ {3}} = 7\frac{19755}{21952} = 7.899918002915452
Share
Copied to clipboard
\frac{\left(\frac{3+16-5-3^{3}}{7}\right)^{3}}{8^{2}}+2^{3}
Calculate 4 to the power of 2 and get 16.
\frac{\left(\frac{19-5-3^{3}}{7}\right)^{3}}{8^{2}}+2^{3}
Add 3 and 16 to get 19.
\frac{\left(\frac{14-3^{3}}{7}\right)^{3}}{8^{2}}+2^{3}
Subtract 5 from 19 to get 14.
\frac{\left(\frac{14-27}{7}\right)^{3}}{8^{2}}+2^{3}
Calculate 3 to the power of 3 and get 27.
\frac{\left(\frac{-13}{7}\right)^{3}}{8^{2}}+2^{3}
Subtract 27 from 14 to get -13.
\frac{\left(-\frac{13}{7}\right)^{3}}{8^{2}}+2^{3}
Fraction \frac{-13}{7} can be rewritten as -\frac{13}{7} by extracting the negative sign.
\frac{-\frac{2197}{343}}{8^{2}}+2^{3}
Calculate -\frac{13}{7} to the power of 3 and get -\frac{2197}{343}.
\frac{-\frac{2197}{343}}{64}+2^{3}
Calculate 8 to the power of 2 and get 64.
\frac{-2197}{343\times 64}+2^{3}
Express \frac{-\frac{2197}{343}}{64} as a single fraction.
\frac{-2197}{21952}+2^{3}
Multiply 343 and 64 to get 21952.
-\frac{2197}{21952}+2^{3}
Fraction \frac{-2197}{21952} can be rewritten as -\frac{2197}{21952} by extracting the negative sign.
-\frac{2197}{21952}+8
Calculate 2 to the power of 3 and get 8.
\frac{173419}{21952}
Add -\frac{2197}{21952} and 8 to get \frac{173419}{21952}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}