Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4033-x-x\right)^{2}+3289=2\left(2018-x\right)\left(2015-x\right)
Add 2018 and 2015 to get 4033.
\left(4033-2x\right)^{2}+3289=2\left(2018-x\right)\left(2015-x\right)
Combine -x and -x to get -2x.
16265089-16132x+4x^{2}+3289=2\left(2018-x\right)\left(2015-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4033-2x\right)^{2}.
16268378-16132x+4x^{2}=2\left(2018-x\right)\left(2015-x\right)
Add 16265089 and 3289 to get 16268378.
16268378-16132x+4x^{2}=\left(4036-2x\right)\left(2015-x\right)
Use the distributive property to multiply 2 by 2018-x.
16268378-16132x+4x^{2}=8132540-8066x+2x^{2}
Use the distributive property to multiply 4036-2x by 2015-x and combine like terms.
16268378-16132x+4x^{2}-8132540=-8066x+2x^{2}
Subtract 8132540 from both sides.
8135838-16132x+4x^{2}=-8066x+2x^{2}
Subtract 8132540 from 16268378 to get 8135838.
8135838-16132x+4x^{2}+8066x=2x^{2}
Add 8066x to both sides.
8135838-8066x+4x^{2}=2x^{2}
Combine -16132x and 8066x to get -8066x.
8135838-8066x+4x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
8135838-8066x+2x^{2}=0
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}-8066x+8135838=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8066\right)±\sqrt{\left(-8066\right)^{2}-4\times 2\times 8135838}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8066 for b, and 8135838 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8066\right)±\sqrt{65060356-4\times 2\times 8135838}}{2\times 2}
Square -8066.
x=\frac{-\left(-8066\right)±\sqrt{65060356-8\times 8135838}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8066\right)±\sqrt{65060356-65086704}}{2\times 2}
Multiply -8 times 8135838.
x=\frac{-\left(-8066\right)±\sqrt{-26348}}{2\times 2}
Add 65060356 to -65086704.
x=\frac{-\left(-8066\right)±2\sqrt{6587}i}{2\times 2}
Take the square root of -26348.
x=\frac{8066±2\sqrt{6587}i}{2\times 2}
The opposite of -8066 is 8066.
x=\frac{8066±2\sqrt{6587}i}{4}
Multiply 2 times 2.
x=\frac{8066+2\sqrt{6587}i}{4}
Now solve the equation x=\frac{8066±2\sqrt{6587}i}{4} when ± is plus. Add 8066 to 2i\sqrt{6587}.
x=\frac{4033+\sqrt{6587}i}{2}
Divide 8066+2i\sqrt{6587} by 4.
x=\frac{-2\sqrt{6587}i+8066}{4}
Now solve the equation x=\frac{8066±2\sqrt{6587}i}{4} when ± is minus. Subtract 2i\sqrt{6587} from 8066.
x=\frac{-\sqrt{6587}i+4033}{2}
Divide 8066-2i\sqrt{6587} by 4.
x=\frac{4033+\sqrt{6587}i}{2} x=\frac{-\sqrt{6587}i+4033}{2}
The equation is now solved.
\left(4033-x-x\right)^{2}+3289=2\left(2018-x\right)\left(2015-x\right)
Add 2018 and 2015 to get 4033.
\left(4033-2x\right)^{2}+3289=2\left(2018-x\right)\left(2015-x\right)
Combine -x and -x to get -2x.
16265089-16132x+4x^{2}+3289=2\left(2018-x\right)\left(2015-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4033-2x\right)^{2}.
16268378-16132x+4x^{2}=2\left(2018-x\right)\left(2015-x\right)
Add 16265089 and 3289 to get 16268378.
16268378-16132x+4x^{2}=\left(4036-2x\right)\left(2015-x\right)
Use the distributive property to multiply 2 by 2018-x.
16268378-16132x+4x^{2}=8132540-8066x+2x^{2}
Use the distributive property to multiply 4036-2x by 2015-x and combine like terms.
16268378-16132x+4x^{2}+8066x=8132540+2x^{2}
Add 8066x to both sides.
16268378-8066x+4x^{2}=8132540+2x^{2}
Combine -16132x and 8066x to get -8066x.
16268378-8066x+4x^{2}-2x^{2}=8132540
Subtract 2x^{2} from both sides.
16268378-8066x+2x^{2}=8132540
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
-8066x+2x^{2}=8132540-16268378
Subtract 16268378 from both sides.
-8066x+2x^{2}=-8135838
Subtract 16268378 from 8132540 to get -8135838.
2x^{2}-8066x=-8135838
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-8066x}{2}=-\frac{8135838}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8066}{2}\right)x=-\frac{8135838}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4033x=-\frac{8135838}{2}
Divide -8066 by 2.
x^{2}-4033x=-4067919
Divide -8135838 by 2.
x^{2}-4033x+\left(-\frac{4033}{2}\right)^{2}=-4067919+\left(-\frac{4033}{2}\right)^{2}
Divide -4033, the coefficient of the x term, by 2 to get -\frac{4033}{2}. Then add the square of -\frac{4033}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4033x+\frac{16265089}{4}=-4067919+\frac{16265089}{4}
Square -\frac{4033}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-4033x+\frac{16265089}{4}=-\frac{6587}{4}
Add -4067919 to \frac{16265089}{4}.
\left(x-\frac{4033}{2}\right)^{2}=-\frac{6587}{4}
Factor x^{2}-4033x+\frac{16265089}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4033}{2}\right)^{2}}=\sqrt{-\frac{6587}{4}}
Take the square root of both sides of the equation.
x-\frac{4033}{2}=\frac{\sqrt{6587}i}{2} x-\frac{4033}{2}=-\frac{\sqrt{6587}i}{2}
Simplify.
x=\frac{4033+\sqrt{6587}i}{2} x=\frac{-\sqrt{6587}i+4033}{2}
Add \frac{4033}{2} to both sides of the equation.