Evaluate
-\frac{y^{2}}{x}-\frac{7y}{2}+6x+\frac{y}{x}-2
Expand
-\frac{y^{2}}{x}-\frac{7y}{2}+6x+\frac{y}{x}-2
Share
Copied to clipboard
\frac{2x+\frac{yx}{2}-y-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Express \frac{y}{2}x as a single fraction.
\frac{\frac{2\left(2x-y\right)}{2}+\frac{yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-y times \frac{2}{2}.
\frac{\frac{2\left(2x-y\right)+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Since \frac{2\left(2x-y\right)}{2} and \frac{yx}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Do the multiplications in 2\left(2x-y\right)+yx.
\frac{\frac{4x-2y+yx}{2}-6x^{2}+3xy+y^{2}}{-x}
Use the distributive property to multiply -3 by 2x^{2}-xy.
\frac{\frac{4x-2y+yx}{2}+\frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6x^{2}+3xy+y^{2} times \frac{2}{2}.
\frac{\frac{4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
Since \frac{4x-2y+yx}{2} and \frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx-12x^{2}+6xy+2y^{2}}{2}}{-x}
Do the multiplications in 4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right).
\frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x}
Combine like terms in 4x-2y+yx-12x^{2}+6xy+2y^{2}.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2\left(-x\right)}
Express \frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x} as a single fraction.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{-2x}
Multiply 2 and -1 to get -2.
\frac{2x+\frac{yx}{2}-y-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Express \frac{y}{2}x as a single fraction.
\frac{\frac{2\left(2x-y\right)}{2}+\frac{yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-y times \frac{2}{2}.
\frac{\frac{2\left(2x-y\right)+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Since \frac{2\left(2x-y\right)}{2} and \frac{yx}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Do the multiplications in 2\left(2x-y\right)+yx.
\frac{\frac{4x-2y+yx}{2}-6x^{2}+3xy+y^{2}}{-x}
Use the distributive property to multiply -3 by 2x^{2}-xy.
\frac{\frac{4x-2y+yx}{2}+\frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6x^{2}+3xy+y^{2} times \frac{2}{2}.
\frac{\frac{4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
Since \frac{4x-2y+yx}{2} and \frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx-12x^{2}+6xy+2y^{2}}{2}}{-x}
Do the multiplications in 4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right).
\frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x}
Combine like terms in 4x-2y+yx-12x^{2}+6xy+2y^{2}.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2\left(-x\right)}
Express \frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x} as a single fraction.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{-2x}
Multiply 2 and -1 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}