Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2x+\frac{yx}{2}-y-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Express \frac{y}{2}x as a single fraction.
\frac{\frac{2\left(2x-y\right)}{2}+\frac{yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-y times \frac{2}{2}.
\frac{\frac{2\left(2x-y\right)+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Since \frac{2\left(2x-y\right)}{2} and \frac{yx}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Do the multiplications in 2\left(2x-y\right)+yx.
\frac{\frac{4x-2y+yx}{2}-6x^{2}+3xy+y^{2}}{-x}
Use the distributive property to multiply -3 by 2x^{2}-xy.
\frac{\frac{4x-2y+yx}{2}+\frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6x^{2}+3xy+y^{2} times \frac{2}{2}.
\frac{\frac{4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
Since \frac{4x-2y+yx}{2} and \frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx-12x^{2}+6xy+2y^{2}}{2}}{-x}
Do the multiplications in 4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right).
\frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x}
Combine like terms in 4x-2y+yx-12x^{2}+6xy+2y^{2}.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2\left(-x\right)}
Express \frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x} as a single fraction.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{-2x}
Multiply 2 and -1 to get -2.
\frac{2x+\frac{yx}{2}-y-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Express \frac{y}{2}x as a single fraction.
\frac{\frac{2\left(2x-y\right)}{2}+\frac{yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-y times \frac{2}{2}.
\frac{\frac{2\left(2x-y\right)+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Since \frac{2\left(2x-y\right)}{2} and \frac{yx}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx}{2}-3\left(2x^{2}-xy\right)+y^{2}}{-x}
Do the multiplications in 2\left(2x-y\right)+yx.
\frac{\frac{4x-2y+yx}{2}-6x^{2}+3xy+y^{2}}{-x}
Use the distributive property to multiply -3 by 2x^{2}-xy.
\frac{\frac{4x-2y+yx}{2}+\frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6x^{2}+3xy+y^{2} times \frac{2}{2}.
\frac{\frac{4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right)}{2}}{-x}
Since \frac{4x-2y+yx}{2} and \frac{2\left(-6x^{2}+3xy+y^{2}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4x-2y+yx-12x^{2}+6xy+2y^{2}}{2}}{-x}
Do the multiplications in 4x-2y+yx+2\left(-6x^{2}+3xy+y^{2}\right).
\frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x}
Combine like terms in 4x-2y+yx-12x^{2}+6xy+2y^{2}.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2\left(-x\right)}
Express \frac{\frac{4x-2y+2y^{2}+7yx-12x^{2}}{2}}{-x} as a single fraction.
\frac{4x-2y+2y^{2}+7yx-12x^{2}}{-2x}
Multiply 2 and -1 to get -2.