Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

ba+2b^{2}-6a^{2}-\left(a+2b\right)^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Use the distributive property to multiply 2b-3a by 2a+b and combine like terms.
ba+2b^{2}-6a^{2}-\left(a^{2}+4ab+4b^{2}\right)+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
ba+2b^{2}-6a^{2}-a^{2}-4ab-4b^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
To find the opposite of a^{2}+4ab+4b^{2}, find the opposite of each term.
ba+2b^{2}-7a^{2}-4ab-4b^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Combine -6a^{2} and -a^{2} to get -7a^{2}.
-3ba+2b^{2}-7a^{2}-4b^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Combine ba and -4ab to get -3ba.
-3ba-2b^{2}-7a^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Combine 2b^{2} and -4b^{2} to get -2b^{2}.
-3ba-2b^{2}-7a^{2}+\frac{1}{2}a+\frac{1}{2}b-5-\frac{2}{3}a
To find the opposite of 5+\frac{2}{3}a, find the opposite of each term.
-3ba-2b^{2}-7a^{2}-\frac{1}{6}a+\frac{1}{2}b-5
Combine \frac{1}{2}a and -\frac{2}{3}a to get -\frac{1}{6}a.
ba+2b^{2}-6a^{2}-\left(a+2b\right)^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Use the distributive property to multiply 2b-3a by 2a+b and combine like terms.
ba+2b^{2}-6a^{2}-\left(a^{2}+4ab+4b^{2}\right)+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
ba+2b^{2}-6a^{2}-a^{2}-4ab-4b^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
To find the opposite of a^{2}+4ab+4b^{2}, find the opposite of each term.
ba+2b^{2}-7a^{2}-4ab-4b^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Combine -6a^{2} and -a^{2} to get -7a^{2}.
-3ba+2b^{2}-7a^{2}-4b^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Combine ba and -4ab to get -3ba.
-3ba-2b^{2}-7a^{2}+\frac{1}{2}a+\frac{1}{2}b-\left(5+\frac{2}{3}a\right)
Combine 2b^{2} and -4b^{2} to get -2b^{2}.
-3ba-2b^{2}-7a^{2}+\frac{1}{2}a+\frac{1}{2}b-5-\frac{2}{3}a
To find the opposite of 5+\frac{2}{3}a, find the opposite of each term.
-3ba-2b^{2}-7a^{2}-\frac{1}{6}a+\frac{1}{2}b-5
Combine \frac{1}{2}a and -\frac{2}{3}a to get -\frac{1}{6}a.