Evaluate
\frac{5488}{513}\approx 10.69785575
Factor
\frac{2 ^ {4} \cdot 7 ^ {3}}{3 ^ {3} \cdot 19} = 10\frac{358}{513} = 10.69785575048733
Share
Copied to clipboard
\frac{\left(\frac{10}{5}-\frac{3}{5}\right)\left(3-\frac{1}{3}\right)}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Convert 2 to fraction \frac{10}{5}.
\frac{\frac{10-3}{5}\left(3-\frac{1}{3}\right)}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Since \frac{10}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{5}\left(3-\frac{1}{3}\right)}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Subtract 3 from 10 to get 7.
\frac{\frac{7}{5}\left(\frac{9}{3}-\frac{1}{3}\right)}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Convert 3 to fraction \frac{9}{3}.
\frac{\frac{7}{5}\times \frac{9-1}{3}}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Since \frac{9}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{5}\times \frac{8}{3}}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Subtract 1 from 9 to get 8.
\frac{\frac{7\times 8}{5\times 3}}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Multiply \frac{7}{5} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{56}{15}}{4-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Do the multiplications in the fraction \frac{7\times 8}{5\times 3}.
\frac{\frac{56}{15}}{\frac{16}{4}-\frac{1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Convert 4 to fraction \frac{16}{4}.
\frac{\frac{56}{15}}{\frac{16-1}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Since \frac{16}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{56}{15}}{\frac{15}{4}+5-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Subtract 1 from 16 to get 15.
\frac{\frac{56}{15}}{\frac{15}{4}+\frac{20}{4}-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Convert 5 to fraction \frac{20}{4}.
\frac{\frac{56}{15}}{\frac{15+20}{4}-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Since \frac{15}{4} and \frac{20}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{56}{15}}{\frac{35}{4}-\frac{1}{5}}\left(\frac{1}{2}+24\right)
Add 15 and 20 to get 35.
\frac{\frac{56}{15}}{\frac{175}{20}-\frac{4}{20}}\left(\frac{1}{2}+24\right)
Least common multiple of 4 and 5 is 20. Convert \frac{35}{4} and \frac{1}{5} to fractions with denominator 20.
\frac{\frac{56}{15}}{\frac{175-4}{20}}\left(\frac{1}{2}+24\right)
Since \frac{175}{20} and \frac{4}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{56}{15}}{\frac{171}{20}}\left(\frac{1}{2}+24\right)
Subtract 4 from 175 to get 171.
\frac{56}{15}\times \frac{20}{171}\left(\frac{1}{2}+24\right)
Divide \frac{56}{15} by \frac{171}{20} by multiplying \frac{56}{15} by the reciprocal of \frac{171}{20}.
\frac{56\times 20}{15\times 171}\left(\frac{1}{2}+24\right)
Multiply \frac{56}{15} times \frac{20}{171} by multiplying numerator times numerator and denominator times denominator.
\frac{1120}{2565}\left(\frac{1}{2}+24\right)
Do the multiplications in the fraction \frac{56\times 20}{15\times 171}.
\frac{224}{513}\left(\frac{1}{2}+24\right)
Reduce the fraction \frac{1120}{2565} to lowest terms by extracting and canceling out 5.
\frac{224}{513}\left(\frac{1}{2}+\frac{48}{2}\right)
Convert 24 to fraction \frac{48}{2}.
\frac{224}{513}\times \frac{1+48}{2}
Since \frac{1}{2} and \frac{48}{2} have the same denominator, add them by adding their numerators.
\frac{224}{513}\times \frac{49}{2}
Add 1 and 48 to get 49.
\frac{224\times 49}{513\times 2}
Multiply \frac{224}{513} times \frac{49}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{10976}{1026}
Do the multiplications in the fraction \frac{224\times 49}{513\times 2}.
\frac{5488}{513}
Reduce the fraction \frac{10976}{1026} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}