Evaluate
\frac{19}{12}\approx 1.583333333
Factor
\frac{19}{2 ^ {2} \cdot 3} = 1\frac{7}{12} = 1.5833333333333333
Share
Copied to clipboard
\frac{\frac{4}{2}-\frac{1}{2}}{2}+\left(1+\frac{1}{5}\right)\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{4-1}{2}}{2}+\left(1+\frac{1}{5}\right)\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{2}}{2}+\left(1+\frac{1}{5}\right)\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Subtract 1 from 4 to get 3.
\frac{3}{2\times 2}+\left(1+\frac{1}{5}\right)\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Express \frac{\frac{3}{2}}{2} as a single fraction.
\frac{3}{4}+\left(1+\frac{1}{5}\right)\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Multiply 2 and 2 to get 4.
\frac{3}{4}+\left(\frac{5}{5}+\frac{1}{5}\right)\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Convert 1 to fraction \frac{5}{5}.
\frac{3}{4}+\frac{5+1}{5}\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{3}{4}+\frac{6}{5}\left(1-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Add 5 and 1 to get 6.
\frac{3}{4}+\frac{6}{5}\left(\frac{6}{6}-\frac{1}{6}\right)-\frac{1}{9}\times \frac{3}{2}
Convert 1 to fraction \frac{6}{6}.
\frac{3}{4}+\frac{6}{5}\times \frac{6-1}{6}-\frac{1}{9}\times \frac{3}{2}
Since \frac{6}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}+\frac{6}{5}\times \frac{5}{6}-\frac{1}{9}\times \frac{3}{2}
Subtract 1 from 6 to get 5.
\frac{3}{4}+1-\frac{1}{9}\times \frac{3}{2}
Cancel out \frac{6}{5} and its reciprocal \frac{5}{6}.
\frac{3}{4}+\frac{4}{4}-\frac{1}{9}\times \frac{3}{2}
Convert 1 to fraction \frac{4}{4}.
\frac{3+4}{4}-\frac{1}{9}\times \frac{3}{2}
Since \frac{3}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}-\frac{1}{9}\times \frac{3}{2}
Add 3 and 4 to get 7.
\frac{7}{4}-\frac{1\times 3}{9\times 2}
Multiply \frac{1}{9} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{4}-\frac{3}{18}
Do the multiplications in the fraction \frac{1\times 3}{9\times 2}.
\frac{7}{4}-\frac{1}{6}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
\frac{21}{12}-\frac{2}{12}
Least common multiple of 4 and 6 is 12. Convert \frac{7}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{21-2}{12}
Since \frac{21}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{12}
Subtract 2 from 21 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}