Solve for R_0
R_{0}=\frac{\sqrt{29215585}}{33375}\approx 0.161951889
R_{0}=-\frac{\sqrt{29215585}}{33375}\approx -0.161951889
Share
Copied to clipboard
23.24\times 10^{-27}=\frac{1.602\times 10^{-19}\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{4}}
Multiply 14 and 1.66 to get 23.24.
23.24\times \frac{1}{1000000000000000000000000000}=\frac{1.602\times 10^{-19}\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{4}}
Calculate 10 to the power of -27 and get \frac{1}{1000000000000000000000000000}.
\frac{581}{25000000000000000000000000000}=\frac{1.602\times 10^{-19}\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{4}}
Multiply 23.24 and \frac{1}{1000000000000000000000000000} to get \frac{581}{25000000000000000000000000000}.
\frac{581}{25000000000000000000000000000}=\frac{1.602\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{23}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{581}{25000000000000000000000000000}=\frac{1.602\times 0.25R_{0}^{2}}{2\times 2.26\times 10^{23}}
Calculate 0.5 to the power of 2 and get 0.25.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{2\times 2.26\times 10^{23}}
Multiply 1.602 and 0.25 to get 0.4005.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{4.52\times 10^{23}}
Multiply 2 and 2.26 to get 4.52.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{4.52\times 100000000000000000000000}
Calculate 10 to the power of 23 and get 100000000000000000000000.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{452000000000000000000000}
Multiply 4.52 and 100000000000000000000000 to get 452000000000000000000000.
\frac{581}{25000000000000000000000000000}=\frac{801}{904000000000000000000000000}R_{0}^{2}
Divide 0.4005R_{0}^{2} by 452000000000000000000000 to get \frac{801}{904000000000000000000000000}R_{0}^{2}.
\frac{801}{904000000000000000000000000}R_{0}^{2}=\frac{581}{25000000000000000000000000000}
Swap sides so that all variable terms are on the left hand side.
R_{0}^{2}=\frac{\frac{581}{25000000000000000000000000000}}{\frac{801}{904000000000000000000000000}}
Divide both sides by \frac{801}{904000000000000000000000000}.
R_{0}^{2}=\frac{581}{25000000000000000000000000000\times \frac{801}{904000000000000000000000000}}
Express \frac{\frac{581}{25000000000000000000000000000}}{\frac{801}{904000000000000000000000000}} as a single fraction.
R_{0}^{2}=\frac{581}{\frac{2503125}{113}}
Multiply 25000000000000000000000000000 and \frac{801}{904000000000000000000000000} to get \frac{2503125}{113}.
R_{0}=\frac{\sqrt{29215585}}{33375} R_{0}=-\frac{\sqrt{29215585}}{33375}
Take the square root of both sides of the equation.
23.24\times 10^{-27}=\frac{1.602\times 10^{-19}\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{4}}
Multiply 14 and 1.66 to get 23.24.
23.24\times \frac{1}{1000000000000000000000000000}=\frac{1.602\times 10^{-19}\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{4}}
Calculate 10 to the power of -27 and get \frac{1}{1000000000000000000000000000}.
\frac{581}{25000000000000000000000000000}=\frac{1.602\times 10^{-19}\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{4}}
Multiply 23.24 and \frac{1}{1000000000000000000000000000} to get \frac{581}{25000000000000000000000000000}.
\frac{581}{25000000000000000000000000000}=\frac{1.602\times 0.5^{2}R_{0}^{2}}{2\times 2.26\times 10^{23}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{581}{25000000000000000000000000000}=\frac{1.602\times 0.25R_{0}^{2}}{2\times 2.26\times 10^{23}}
Calculate 0.5 to the power of 2 and get 0.25.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{2\times 2.26\times 10^{23}}
Multiply 1.602 and 0.25 to get 0.4005.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{4.52\times 10^{23}}
Multiply 2 and 2.26 to get 4.52.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{4.52\times 100000000000000000000000}
Calculate 10 to the power of 23 and get 100000000000000000000000.
\frac{581}{25000000000000000000000000000}=\frac{0.4005R_{0}^{2}}{452000000000000000000000}
Multiply 4.52 and 100000000000000000000000 to get 452000000000000000000000.
\frac{581}{25000000000000000000000000000}=\frac{801}{904000000000000000000000000}R_{0}^{2}
Divide 0.4005R_{0}^{2} by 452000000000000000000000 to get \frac{801}{904000000000000000000000000}R_{0}^{2}.
\frac{801}{904000000000000000000000000}R_{0}^{2}=\frac{581}{25000000000000000000000000000}
Swap sides so that all variable terms are on the left hand side.
\frac{801}{904000000000000000000000000}R_{0}^{2}-\frac{581}{25000000000000000000000000000}=0
Subtract \frac{581}{25000000000000000000000000000} from both sides.
R_{0}=\frac{0±\sqrt{0^{2}-4\times \frac{801}{904000000000000000000000000}\left(-\frac{581}{25000000000000000000000000000}\right)}}{2\times \frac{801}{904000000000000000000000000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{801}{904000000000000000000000000} for a, 0 for b, and -\frac{581}{25000000000000000000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R_{0}=\frac{0±\sqrt{-4\times \frac{801}{904000000000000000000000000}\left(-\frac{581}{25000000000000000000000000000}\right)}}{2\times \frac{801}{904000000000000000000000000}}
Square 0.
R_{0}=\frac{0±\sqrt{-\frac{801}{226000000000000000000000000}\left(-\frac{581}{25000000000000000000000000000}\right)}}{2\times \frac{801}{904000000000000000000000000}}
Multiply -4 times \frac{801}{904000000000000000000000000}.
R_{0}=\frac{0±\sqrt{\frac{465381}{5650000000000000000000000000000000000000000000000000000}}}{2\times \frac{801}{904000000000000000000000000}}
Multiply -\frac{801}{226000000000000000000000000} times -\frac{581}{25000000000000000000000000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
R_{0}=\frac{0±\frac{3\sqrt{29215585}}{56500000000000000000000000000}}{2\times \frac{801}{904000000000000000000000000}}
Take the square root of \frac{465381}{5650000000000000000000000000000000000000000000000000000}.
R_{0}=\frac{0±\frac{3\sqrt{29215585}}{56500000000000000000000000000}}{\frac{801}{452000000000000000000000000}}
Multiply 2 times \frac{801}{904000000000000000000000000}.
R_{0}=\frac{\sqrt{29215585}}{33375}
Now solve the equation R_{0}=\frac{0±\frac{3\sqrt{29215585}}{56500000000000000000000000000}}{\frac{801}{452000000000000000000000000}} when ± is plus.
R_{0}=-\frac{\sqrt{29215585}}{33375}
Now solve the equation R_{0}=\frac{0±\frac{3\sqrt{29215585}}{56500000000000000000000000000}}{\frac{801}{452000000000000000000000000}} when ± is minus.
R_{0}=\frac{\sqrt{29215585}}{33375} R_{0}=-\frac{\sqrt{29215585}}{33375}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}