Evaluate
\frac{13}{5}=2.6
Factor
\frac{13}{5} = 2\frac{3}{5} = 2.6
Share
Copied to clipboard
\frac{\frac{36+4}{10}+2+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Multiply 12 and 3 to get 36.
\frac{\frac{40}{10}+2+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Add 36 and 4 to get 40.
\frac{4+2+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Divide 40 by 10 to get 4.
\frac{6+\frac{3\times 6}{\frac{36}{3}-2}}{3}
Add 4 and 2 to get 6.
\frac{6+\frac{18}{\frac{36}{3}-2}}{3}
Multiply 3 and 6 to get 18.
\frac{6+\frac{18}{12-2}}{3}
Divide 36 by 3 to get 12.
\frac{6+\frac{18}{10}}{3}
Subtract 2 from 12 to get 10.
\frac{6+\frac{9}{5}}{3}
Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{30}{5}+\frac{9}{5}}{3}
Convert 6 to fraction \frac{30}{5}.
\frac{\frac{30+9}{5}}{3}
Since \frac{30}{5} and \frac{9}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{39}{5}}{3}
Add 30 and 9 to get 39.
\frac{39}{5\times 3}
Express \frac{\frac{39}{5}}{3} as a single fraction.
\frac{39}{15}
Multiply 5 and 3 to get 15.
\frac{13}{5}
Reduce the fraction \frac{39}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}