Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{10^{2}-7^{2}}{10+7}+3\right)^{3}}{2^{2}}-\frac{\frac{8^{6}}{8^{4}}+13-\left(7^{2}-5\times 1\right)}{51}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\left(\frac{10^{2}-7^{2}}{10+7}+3\right)^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 4 from 6 to get 2.
\frac{\left(\frac{100-7^{2}}{10+7}+3\right)^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Calculate 10 to the power of 2 and get 100.
\frac{\left(\frac{100-49}{10+7}+3\right)^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Calculate 7 to the power of 2 and get 49.
\frac{\left(\frac{51}{10+7}+3\right)^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Subtract 49 from 100 to get 51.
\frac{\left(\frac{51}{17}+3\right)^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Add 10 and 7 to get 17.
\frac{\left(3+3\right)^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Divide 51 by 17 to get 3.
\frac{6^{3}}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Add 3 and 3 to get 6.
\frac{216}{2^{2}}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Calculate 6 to the power of 3 and get 216.
\frac{216}{4}-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Calculate 2 to the power of 2 and get 4.
54-\frac{8^{2}+13-\left(7^{2}-5\times 1\right)}{51}
Divide 216 by 4 to get 54.
54-\frac{64+13-\left(7^{2}-5\times 1\right)}{51}
Calculate 8 to the power of 2 and get 64.
54-\frac{64+13-\left(49-5\times 1\right)}{51}
Calculate 7 to the power of 2 and get 49.
54-\frac{64+13-\left(49-5\right)}{51}
Multiply 5 and 1 to get 5.
54-\frac{64+13-44}{51}
Subtract 5 from 49 to get 44.
54-\frac{64-31}{51}
Subtract 44 from 13 to get -31.
54-\frac{33}{51}
Subtract 31 from 64 to get 33.
54-\frac{11}{17}
Reduce the fraction \frac{33}{51} to lowest terms by extracting and canceling out 3.
\frac{907}{17}
Subtract \frac{11}{17} from 54 to get \frac{907}{17}.