Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-2a+a^{2}+\left(2-b\right)^{2}+\left(2a-b\right)\left(2a+b\right)+\left(1+a\right)^{2}+4b
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-a\right)^{2}.
1-2a+a^{2}+4-4b+b^{2}+\left(2a-b\right)\left(2a+b\right)+\left(1+a\right)^{2}+4b
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2-b\right)^{2}.
5-2a+a^{2}-4b+b^{2}+\left(2a-b\right)\left(2a+b\right)+\left(1+a\right)^{2}+4b
Add 1 and 4 to get 5.
5-2a+a^{2}-4b+b^{2}+\left(2a\right)^{2}-b^{2}+\left(1+a\right)^{2}+4b
Consider \left(2a-b\right)\left(2a+b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-2a+a^{2}-4b+b^{2}+2^{2}a^{2}-b^{2}+\left(1+a\right)^{2}+4b
Expand \left(2a\right)^{2}.
5-2a+a^{2}-4b+b^{2}+4a^{2}-b^{2}+\left(1+a\right)^{2}+4b
Calculate 2 to the power of 2 and get 4.
5-2a+5a^{2}-4b+b^{2}-b^{2}+\left(1+a\right)^{2}+4b
Combine a^{2} and 4a^{2} to get 5a^{2}.
5-2a+5a^{2}-4b+\left(1+a\right)^{2}+4b
Combine b^{2} and -b^{2} to get 0.
5-2a+5a^{2}-4b+1+2a+a^{2}+4b
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(1+a\right)^{2}.
6-2a+5a^{2}-4b+2a+a^{2}+4b
Add 5 and 1 to get 6.
6+5a^{2}-4b+a^{2}+4b
Combine -2a and 2a to get 0.
6+6a^{2}-4b+4b
Combine 5a^{2} and a^{2} to get 6a^{2}.
6+6a^{2}
Combine -4b and 4b to get 0.
1-2a+a^{2}+\left(2-b\right)^{2}+\left(2a-b\right)\left(2a+b\right)+\left(1+a\right)^{2}+4b
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-a\right)^{2}.
1-2a+a^{2}+4-4b+b^{2}+\left(2a-b\right)\left(2a+b\right)+\left(1+a\right)^{2}+4b
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2-b\right)^{2}.
5-2a+a^{2}-4b+b^{2}+\left(2a-b\right)\left(2a+b\right)+\left(1+a\right)^{2}+4b
Add 1 and 4 to get 5.
5-2a+a^{2}-4b+b^{2}+\left(2a\right)^{2}-b^{2}+\left(1+a\right)^{2}+4b
Consider \left(2a-b\right)\left(2a+b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-2a+a^{2}-4b+b^{2}+2^{2}a^{2}-b^{2}+\left(1+a\right)^{2}+4b
Expand \left(2a\right)^{2}.
5-2a+a^{2}-4b+b^{2}+4a^{2}-b^{2}+\left(1+a\right)^{2}+4b
Calculate 2 to the power of 2 and get 4.
5-2a+5a^{2}-4b+b^{2}-b^{2}+\left(1+a\right)^{2}+4b
Combine a^{2} and 4a^{2} to get 5a^{2}.
5-2a+5a^{2}-4b+\left(1+a\right)^{2}+4b
Combine b^{2} and -b^{2} to get 0.
5-2a+5a^{2}-4b+1+2a+a^{2}+4b
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(1+a\right)^{2}.
6-2a+5a^{2}-4b+2a+a^{2}+4b
Add 5 and 1 to get 6.
6+5a^{2}-4b+a^{2}+4b
Combine -2a and 2a to get 0.
6+6a^{2}-4b+4b
Combine 5a^{2} and a^{2} to get 6a^{2}.
6+6a^{2}
Combine -4b and 4b to get 0.