Evaluate
2-x
Expand
2-x
Graph
Share
Copied to clipboard
\left(\frac{6}{6}-\frac{5}{6}\right)\left(\frac{5}{2}-\frac{1}{3}\right)\times \frac{72}{13}-x
Convert 1 to fraction \frac{6}{6}.
\frac{6-5}{6}\left(\frac{5}{2}-\frac{1}{3}\right)\times \frac{72}{13}-x
Since \frac{6}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}\left(\frac{5}{2}-\frac{1}{3}\right)\times \frac{72}{13}-x
Subtract 5 from 6 to get 1.
\frac{1}{6}\left(\frac{15}{6}-\frac{2}{6}\right)\times \frac{72}{13}-x
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{1}{6}\times \frac{15-2}{6}\times \frac{72}{13}-x
Since \frac{15}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}\times \frac{13}{6}\times \frac{72}{13}-x
Subtract 2 from 15 to get 13.
\frac{1\times 13}{6\times 6}\times \frac{72}{13}-x
Multiply \frac{1}{6} times \frac{13}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{13}{36}\times \frac{72}{13}-x
Do the multiplications in the fraction \frac{1\times 13}{6\times 6}.
\frac{13\times 72}{36\times 13}-x
Multiply \frac{13}{36} times \frac{72}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{72}{36}-x
Cancel out 13 in both numerator and denominator.
2-x
Divide 72 by 36 to get 2.
\left(\frac{6}{6}-\frac{5}{6}\right)\left(\frac{5}{2}-\frac{1}{3}\right)\times \frac{72}{13}-x
Convert 1 to fraction \frac{6}{6}.
\frac{6-5}{6}\left(\frac{5}{2}-\frac{1}{3}\right)\times \frac{72}{13}-x
Since \frac{6}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}\left(\frac{5}{2}-\frac{1}{3}\right)\times \frac{72}{13}-x
Subtract 5 from 6 to get 1.
\frac{1}{6}\left(\frac{15}{6}-\frac{2}{6}\right)\times \frac{72}{13}-x
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{1}{6}\times \frac{15-2}{6}\times \frac{72}{13}-x
Since \frac{15}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}\times \frac{13}{6}\times \frac{72}{13}-x
Subtract 2 from 15 to get 13.
\frac{1\times 13}{6\times 6}\times \frac{72}{13}-x
Multiply \frac{1}{6} times \frac{13}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{13}{36}\times \frac{72}{13}-x
Do the multiplications in the fraction \frac{1\times 13}{6\times 6}.
\frac{13\times 72}{36\times 13}-x
Multiply \frac{13}{36} times \frac{72}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{72}{36}-x
Cancel out 13 in both numerator and denominator.
2-x
Divide 72 by 36 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}