Evaluate
-\frac{47}{48}\approx -0.979166667
Factor
-\frac{47}{48} = -0.9791666666666666
Share
Copied to clipboard
\frac{-\frac{63+1}{9}-\left(-\frac{2\times 15+14}{15}\right)}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Multiply 7 and 9 to get 63.
\frac{-\frac{64}{9}-\left(-\frac{2\times 15+14}{15}\right)}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Add 63 and 1 to get 64.
\frac{-\frac{64}{9}-\left(-\frac{30+14}{15}\right)}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Multiply 2 and 15 to get 30.
\frac{-\frac{64}{9}-\left(-\frac{44}{15}\right)}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Add 30 and 14 to get 44.
\frac{-\frac{64}{9}+\frac{44}{15}}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
The opposite of -\frac{44}{15} is \frac{44}{15}.
\frac{-\frac{320}{45}+\frac{132}{45}}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Least common multiple of 9 and 15 is 45. Convert -\frac{64}{9} and \frac{44}{15} to fractions with denominator 45.
\frac{\frac{-320+132}{45}}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Since -\frac{320}{45} and \frac{132}{45} have the same denominator, add them by adding their numerators.
\frac{-\frac{188}{45}}{\frac{2\times 3+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Add -320 and 132 to get -188.
\frac{-\frac{188}{45}}{\frac{6+2}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Multiply 2 and 3 to get 6.
\frac{-\frac{188}{45}}{\frac{8}{3}-\left(-\frac{1\times 5+3}{5}\right)}
Add 6 and 2 to get 8.
\frac{-\frac{188}{45}}{\frac{8}{3}-\left(-\frac{5+3}{5}\right)}
Multiply 1 and 5 to get 5.
\frac{-\frac{188}{45}}{\frac{8}{3}-\left(-\frac{8}{5}\right)}
Add 5 and 3 to get 8.
\frac{-\frac{188}{45}}{\frac{8}{3}+\frac{8}{5}}
The opposite of -\frac{8}{5} is \frac{8}{5}.
\frac{-\frac{188}{45}}{\frac{40}{15}+\frac{24}{15}}
Least common multiple of 3 and 5 is 15. Convert \frac{8}{3} and \frac{8}{5} to fractions with denominator 15.
\frac{-\frac{188}{45}}{\frac{40+24}{15}}
Since \frac{40}{15} and \frac{24}{15} have the same denominator, add them by adding their numerators.
\frac{-\frac{188}{45}}{\frac{64}{15}}
Add 40 and 24 to get 64.
-\frac{188}{45}\times \frac{15}{64}
Divide -\frac{188}{45} by \frac{64}{15} by multiplying -\frac{188}{45} by the reciprocal of \frac{64}{15}.
\frac{-188\times 15}{45\times 64}
Multiply -\frac{188}{45} times \frac{15}{64} by multiplying numerator times numerator and denominator times denominator.
\frac{-2820}{2880}
Do the multiplications in the fraction \frac{-188\times 15}{45\times 64}.
-\frac{47}{48}
Reduce the fraction \frac{-2820}{2880} to lowest terms by extracting and canceling out 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}