Evaluate
\frac{20}{9}\approx 2.222222222
Factor
\frac{2 ^ {2} \cdot 5}{3 ^ {2}} = 2\frac{2}{9} = 2.2222222222222223
Share
Copied to clipboard
\frac{-\frac{9+2}{3}}{-\frac{1\times 7+4}{7}}-\frac{1}{9}
Multiply 3 and 3 to get 9.
\frac{-\frac{11}{3}}{-\frac{1\times 7+4}{7}}-\frac{1}{9}
Add 9 and 2 to get 11.
\frac{-\frac{11}{3}}{-\frac{7+4}{7}}-\frac{1}{9}
Multiply 1 and 7 to get 7.
\frac{-\frac{11}{3}}{-\frac{11}{7}}-\frac{1}{9}
Add 7 and 4 to get 11.
-\frac{11}{3}\left(-\frac{7}{11}\right)-\frac{1}{9}
Divide -\frac{11}{3} by -\frac{11}{7} by multiplying -\frac{11}{3} by the reciprocal of -\frac{11}{7}.
\frac{-11\left(-7\right)}{3\times 11}-\frac{1}{9}
Multiply -\frac{11}{3} times -\frac{7}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{77}{33}-\frac{1}{9}
Do the multiplications in the fraction \frac{-11\left(-7\right)}{3\times 11}.
\frac{7}{3}-\frac{1}{9}
Reduce the fraction \frac{77}{33} to lowest terms by extracting and canceling out 11.
\frac{21}{9}-\frac{1}{9}
Least common multiple of 3 and 9 is 9. Convert \frac{7}{3} and \frac{1}{9} to fractions with denominator 9.
\frac{21-1}{9}
Since \frac{21}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{9}
Subtract 1 from 21 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}