Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(-2x^{5}\left(-\frac{3}{2}\right)\right)^{2}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\left(3x^{5}\right)^{2}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Multiply -2 and -\frac{3}{2} to get 3.
\frac{3^{2}\left(x^{5}\right)^{2}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Expand \left(3x^{5}\right)^{2}.
\frac{3^{2}x^{10}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{9x^{10}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Calculate 3 to the power of 2 and get 9.
\frac{3x^{3}}{-1}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Cancel out 3x^{7} in both numerator and denominator.
-3x^{3}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Anything divided by -1 gives its opposite.
-3x^{3}-\left(-2x\times 3^{2}x^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Expand \left(3x\right)^{2}.
-3x^{3}-\left(-2x\times 9x^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Calculate 3 to the power of 2 and get 9.
-3x^{3}-\left(-18xx^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Multiply -2 and 9 to get -18.
-3x^{3}-\left(-18x^{3}\right)+\left(-2x\right)^{3}+11x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x^{3}+18x^{3}+\left(-2x\right)^{3}+11x^{3}
The opposite of -18x^{3} is 18x^{3}.
15x^{3}+\left(-2x\right)^{3}+11x^{3}
Combine -3x^{3} and 18x^{3} to get 15x^{3}.
15x^{3}+\left(-2\right)^{3}x^{3}+11x^{3}
Expand \left(-2x\right)^{3}.
15x^{3}-8x^{3}+11x^{3}
Calculate -2 to the power of 3 and get -8.
7x^{3}+11x^{3}
Combine 15x^{3} and -8x^{3} to get 7x^{3}.
18x^{3}
Combine 7x^{3} and 11x^{3} to get 18x^{3}.
\frac{\left(-2x^{5}\left(-\frac{3}{2}\right)\right)^{2}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\left(3x^{5}\right)^{2}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Multiply -2 and -\frac{3}{2} to get 3.
\frac{3^{2}\left(x^{5}\right)^{2}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Expand \left(3x^{5}\right)^{2}.
\frac{3^{2}x^{10}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{9x^{10}}{-3x^{7}}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Calculate 3 to the power of 2 and get 9.
\frac{3x^{3}}{-1}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Cancel out 3x^{7} in both numerator and denominator.
-3x^{3}-\left(-2x\times \left(3x\right)^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Anything divided by -1 gives its opposite.
-3x^{3}-\left(-2x\times 3^{2}x^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Expand \left(3x\right)^{2}.
-3x^{3}-\left(-2x\times 9x^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Calculate 3 to the power of 2 and get 9.
-3x^{3}-\left(-18xx^{2}\right)+\left(-2x\right)^{3}+11x^{3}
Multiply -2 and 9 to get -18.
-3x^{3}-\left(-18x^{3}\right)+\left(-2x\right)^{3}+11x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x^{3}+18x^{3}+\left(-2x\right)^{3}+11x^{3}
The opposite of -18x^{3} is 18x^{3}.
15x^{3}+\left(-2x\right)^{3}+11x^{3}
Combine -3x^{3} and 18x^{3} to get 15x^{3}.
15x^{3}+\left(-2\right)^{3}x^{3}+11x^{3}
Expand \left(-2x\right)^{3}.
15x^{3}-8x^{3}+11x^{3}
Calculate -2 to the power of 3 and get -8.
7x^{3}+11x^{3}
Combine 15x^{3} and -8x^{3} to get 7x^{3}.
18x^{3}
Combine 7x^{3} and 11x^{3} to get 18x^{3}.