Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(-2a\right)^{2}-\left(\frac{1}{2}b\right)^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Consider \left(-2a+\frac{1}{2}b\right)\left(-2a-\frac{1}{2}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\left(-2\right)^{2}a^{2}-\left(\frac{1}{2}b\right)^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Expand \left(-2a\right)^{2}.
\left(4a^{2}-\left(\frac{1}{2}b\right)^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Calculate -2 to the power of 2 and get 4.
\left(4a^{2}-\left(\frac{1}{2}\right)^{2}b^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Expand \left(\frac{1}{2}b\right)^{2}.
\left(4a^{2}-\frac{1}{4}b^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\left(16\left(a^{2}\right)^{2}-2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a^{2}-\frac{1}{4}b^{2}\right)^{2}.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(16\left(a^{2}\right)^{2}+2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(16a^{4}+2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(16a^{4}+2a^{2}b^{2}+\frac{1}{16}b^{4}\right)-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Use the distributive property to multiply 16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4} by 16a^{4}+2a^{2}b^{2}+\frac{1}{16}b^{4} and combine like terms.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(256\left(a^{4}\right)^{2}+2a^{4}b^{4}+\frac{1}{256}\left(b^{4}\right)^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(256a^{8}+2a^{4}b^{4}+\frac{1}{256}\left(b^{4}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(256a^{8}+2a^{4}b^{4}+\frac{1}{256}b^{8}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-256a^{8}-2a^{4}b^{4}-\frac{1}{256}b^{8}
To find the opposite of 256a^{8}+2a^{4}b^{4}+\frac{1}{256}b^{8}, find the opposite of each term.
-2a^{4}b^{4}+\frac{1}{256}b^{8}-2a^{4}b^{4}-\frac{1}{256}b^{8}
Combine 256a^{8} and -256a^{8} to get 0.
-4a^{4}b^{4}+\frac{1}{256}b^{8}-\frac{1}{256}b^{8}
Combine -2a^{4}b^{4} and -2a^{4}b^{4} to get -4a^{4}b^{4}.
-4a^{4}b^{4}
Combine \frac{1}{256}b^{8} and -\frac{1}{256}b^{8} to get 0.
\left(\left(-2a\right)^{2}-\left(\frac{1}{2}b\right)^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Consider \left(-2a+\frac{1}{2}b\right)\left(-2a-\frac{1}{2}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\left(-2\right)^{2}a^{2}-\left(\frac{1}{2}b\right)^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Expand \left(-2a\right)^{2}.
\left(4a^{2}-\left(\frac{1}{2}b\right)^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Calculate -2 to the power of 2 and get 4.
\left(4a^{2}-\left(\frac{1}{2}\right)^{2}b^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Expand \left(\frac{1}{2}b\right)^{2}.
\left(4a^{2}-\frac{1}{4}b^{2}\right)^{2}\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\left(16\left(a^{2}\right)^{2}-2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a^{2}-\frac{1}{4}b^{2}\right)^{2}.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(16\left(a^{2}\right)^{2}+2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(4a^{2}+\frac{1}{4}b^{2}\right)^{2}.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(16a^{4}+2a^{2}b^{2}+\frac{1}{16}\left(b^{2}\right)^{2}\right)-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4}\right)\left(16a^{4}+2a^{2}b^{2}+\frac{1}{16}b^{4}\right)-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}
Use the distributive property to multiply 16a^{4}-2a^{2}b^{2}+\frac{1}{16}b^{4} by 16a^{4}+2a^{2}b^{2}+\frac{1}{16}b^{4} and combine like terms.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(256\left(a^{4}\right)^{2}+2a^{4}b^{4}+\frac{1}{256}\left(b^{4}\right)^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(16a^{4}+\frac{1}{16}b^{4}\right)^{2}.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(256a^{8}+2a^{4}b^{4}+\frac{1}{256}\left(b^{4}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-\left(256a^{8}+2a^{4}b^{4}+\frac{1}{256}b^{8}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
256a^{8}-2a^{4}b^{4}+\frac{1}{256}b^{8}-256a^{8}-2a^{4}b^{4}-\frac{1}{256}b^{8}
To find the opposite of 256a^{8}+2a^{4}b^{4}+\frac{1}{256}b^{8}, find the opposite of each term.
-2a^{4}b^{4}+\frac{1}{256}b^{8}-2a^{4}b^{4}-\frac{1}{256}b^{8}
Combine 256a^{8} and -256a^{8} to get 0.
-4a^{4}b^{4}+\frac{1}{256}b^{8}-\frac{1}{256}b^{8}
Combine -2a^{4}b^{4} and -2a^{4}b^{4} to get -4a^{4}b^{4}.
-4a^{4}b^{4}
Combine \frac{1}{256}b^{8} and -\frac{1}{256}b^{8} to get 0.