Evaluate
0.6
Factor
\frac{3}{5} = 0.6
Share
Copied to clipboard
\left(0.25-\frac{\frac{1}{36}}{\left(-\frac{1}{3}\right)^{3}}\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Calculate -0.5 to the power of 2 and get 0.25.
\left(0.25-\frac{\frac{1}{36}}{-\frac{1}{27}}\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\left(0.25-\frac{1}{36}\left(-27\right)\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Divide \frac{1}{36} by -\frac{1}{27} by multiplying \frac{1}{36} by the reciprocal of -\frac{1}{27}.
\left(0.25-\frac{-27}{36}\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Multiply \frac{1}{36} and -27 to get \frac{-27}{36}.
\left(0.25-\left(-\frac{3}{4}\right)\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Reduce the fraction \frac{-27}{36} to lowest terms by extracting and canceling out 9.
\left(0.25+\frac{3}{4}\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
The opposite of -\frac{3}{4} is \frac{3}{4}.
\left(\frac{1}{4}+\frac{3}{4}\right)\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{1+3}{4}\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Since \frac{1}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{4}{4}\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Add 1 and 3 to get 4.
1\times \frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Divide 4 by 4 to get 1.
\frac{2}{3}-\frac{\left(\frac{1}{3}\right)^{2}}{2.5}\times 1.5
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{2}{3}-\frac{\frac{1}{9}}{2.5}\times 1.5
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{2}{3}-\frac{1}{9\times 2.5}\times 1.5
Express \frac{\frac{1}{9}}{2.5} as a single fraction.
\frac{2}{3}-\frac{1}{22.5}\times 1.5
Multiply 9 and 2.5 to get 22.5.
\frac{2}{3}-\frac{10}{225}\times 1.5
Expand \frac{1}{22.5} by multiplying both numerator and the denominator by 10.
\frac{2}{3}-\frac{2}{45}\times 1.5
Reduce the fraction \frac{10}{225} to lowest terms by extracting and canceling out 5.
\frac{2}{3}-\frac{2}{45}\times \frac{3}{2}
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{2}{3}-\frac{2\times 3}{45\times 2}
Multiply \frac{2}{45} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{3}{45}
Cancel out 2 in both numerator and denominator.
\frac{2}{3}-\frac{1}{15}
Reduce the fraction \frac{3}{45} to lowest terms by extracting and canceling out 3.
\frac{10}{15}-\frac{1}{15}
Least common multiple of 3 and 15 is 15. Convert \frac{2}{3} and \frac{1}{15} to fractions with denominator 15.
\frac{10-1}{15}
Since \frac{10}{15} and \frac{1}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{15}
Subtract 1 from 10 to get 9.
\frac{3}{5}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}