Evaluate
-2b^{4}
Expand
-2b^{4}
Share
Copied to clipboard
\frac{\left(-\frac{8}{5}a^{5}b^{4}\left(-\frac{5}{4}\right)b^{4}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\left(-\frac{8}{5}a^{5}b^{8}\left(-\frac{5}{4}\right)\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{\left(2a^{5}b^{8}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
Multiply -\frac{8}{5} and -\frac{5}{4} to get 2.
\frac{2^{2}\left(a^{5}\right)^{2}\left(b^{8}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
Expand \left(2a^{5}b^{8}\right)^{2}.
\frac{2^{2}a^{10}\left(b^{8}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{2^{2}a^{10}b^{16}}{-2a\left(a^{3}b^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{4a^{10}b^{16}}{-2a\left(a^{3}b^{4}\right)^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{4a^{10}b^{16}}{-2a\left(a^{3}\right)^{3}\left(b^{4}\right)^{3}}
Expand \left(a^{3}b^{4}\right)^{3}.
\frac{4a^{10}b^{16}}{-2aa^{9}\left(b^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{4a^{10}b^{16}}{-2aa^{9}b^{12}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{4a^{10}b^{16}}{-2a^{10}b^{12}}
To multiply powers of the same base, add their exponents. Add 1 and 9 to get 10.
\frac{2b^{4}}{-1}
Cancel out 2a^{10}b^{12} in both numerator and denominator.
-2b^{4}
Anything divided by -1 gives its opposite.
\frac{\left(-\frac{8}{5}a^{5}b^{4}\left(-\frac{5}{4}\right)b^{4}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\left(-\frac{8}{5}a^{5}b^{8}\left(-\frac{5}{4}\right)\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{\left(2a^{5}b^{8}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
Multiply -\frac{8}{5} and -\frac{5}{4} to get 2.
\frac{2^{2}\left(a^{5}\right)^{2}\left(b^{8}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
Expand \left(2a^{5}b^{8}\right)^{2}.
\frac{2^{2}a^{10}\left(b^{8}\right)^{2}}{-2a\left(a^{3}b^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{2^{2}a^{10}b^{16}}{-2a\left(a^{3}b^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{4a^{10}b^{16}}{-2a\left(a^{3}b^{4}\right)^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{4a^{10}b^{16}}{-2a\left(a^{3}\right)^{3}\left(b^{4}\right)^{3}}
Expand \left(a^{3}b^{4}\right)^{3}.
\frac{4a^{10}b^{16}}{-2aa^{9}\left(b^{4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{4a^{10}b^{16}}{-2aa^{9}b^{12}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{4a^{10}b^{16}}{-2a^{10}b^{12}}
To multiply powers of the same base, add their exponents. Add 1 and 9 to get 10.
\frac{2b^{4}}{-1}
Cancel out 2a^{10}b^{12} in both numerator and denominator.
-2b^{4}
Anything divided by -1 gives its opposite.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}