Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{5}{2}x^{4}y^{3}\left(-\frac{5}{2}\right)y^{3}\left(-\frac{5}{2}\right)x^{2}y^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(-\frac{5}{2}x^{6}y^{3}\left(-\frac{5}{2}\right)y^{3}\left(-\frac{5}{2}\right)y^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\left(-\frac{5}{2}x^{6}y^{6}\left(-\frac{5}{2}\right)\left(-\frac{5}{2}\right)y^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\left(-\frac{5}{2}x^{6}y^{9}\left(-\frac{5}{2}\right)\left(-\frac{5}{2}\right)\right)^{3}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\left(\frac{25}{4}x^{6}y^{9}\left(-\frac{5}{2}\right)\right)^{3}
Multiply -\frac{5}{2} and -\frac{5}{2} to get \frac{25}{4}.
\left(-\frac{125}{8}x^{6}y^{9}\right)^{3}
Multiply \frac{25}{4} and -\frac{5}{2} to get -\frac{125}{8}.
\left(-\frac{125}{8}\right)^{3}\left(x^{6}\right)^{3}\left(y^{9}\right)^{3}
Expand \left(-\frac{125}{8}x^{6}y^{9}\right)^{3}.
\left(-\frac{125}{8}\right)^{3}x^{18}\left(y^{9}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 6 and 3 to get 18.
\left(-\frac{125}{8}\right)^{3}x^{18}y^{27}
To raise a power to another power, multiply the exponents. Multiply 9 and 3 to get 27.
-\frac{1953125}{512}x^{18}y^{27}
Calculate -\frac{125}{8} to the power of 3 and get -\frac{1953125}{512}.
\left(-\frac{5}{2}x^{4}y^{3}\left(-\frac{5}{2}\right)y^{3}\left(-\frac{5}{2}\right)x^{2}y^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(-\frac{5}{2}x^{6}y^{3}\left(-\frac{5}{2}\right)y^{3}\left(-\frac{5}{2}\right)y^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\left(-\frac{5}{2}x^{6}y^{6}\left(-\frac{5}{2}\right)\left(-\frac{5}{2}\right)y^{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\left(-\frac{5}{2}x^{6}y^{9}\left(-\frac{5}{2}\right)\left(-\frac{5}{2}\right)\right)^{3}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
\left(\frac{25}{4}x^{6}y^{9}\left(-\frac{5}{2}\right)\right)^{3}
Multiply -\frac{5}{2} and -\frac{5}{2} to get \frac{25}{4}.
\left(-\frac{125}{8}x^{6}y^{9}\right)^{3}
Multiply \frac{25}{4} and -\frac{5}{2} to get -\frac{125}{8}.
\left(-\frac{125}{8}\right)^{3}\left(x^{6}\right)^{3}\left(y^{9}\right)^{3}
Expand \left(-\frac{125}{8}x^{6}y^{9}\right)^{3}.
\left(-\frac{125}{8}\right)^{3}x^{18}\left(y^{9}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 6 and 3 to get 18.
\left(-\frac{125}{8}\right)^{3}x^{18}y^{27}
To raise a power to another power, multiply the exponents. Multiply 9 and 3 to get 27.
-\frac{1953125}{512}x^{18}y^{27}
Calculate -\frac{125}{8} to the power of 3 and get -\frac{1953125}{512}.