Evaluate
\frac{729}{64\left(ab\right)^{12}}
Expand
\frac{729}{64\left(ab\right)^{12}}
Share
Copied to clipboard
\frac{\frac{\left(-\frac{4}{9}\right)^{6}\left(a^{3}\right)^{6}\left(b^{4}\right)^{6}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{4}{9}a^{3}b^{4}\right)^{6}.
\frac{\frac{\left(-\frac{4}{9}\right)^{6}a^{18}\left(b^{4}\right)^{6}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 3 and 6 to get 18.
\frac{\frac{\left(-\frac{4}{9}\right)^{6}a^{18}b^{24}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 4 and 6 to get 24.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{4}{9} to the power of 6 and get \frac{4096}{531441}.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\left(-\frac{2}{3}\right)^{6}a^{6}\left(b^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{2}{3}ab^{2}\right)^{6}.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\left(-\frac{2}{3}\right)^{6}a^{6}b^{12}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 6 to get 12.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\frac{64}{729}a^{6}b^{12}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{2}{3} to the power of 6 and get \frac{64}{729}.
\frac{\frac{\frac{4096}{531441}a^{12}b^{12}}{\frac{64}{729}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Cancel out a^{6}b^{12} in both numerator and denominator.
\frac{\frac{\frac{4096}{531441}a^{12}b^{12}\times 729}{64}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Divide \frac{4096}{531441}a^{12}b^{12} by \frac{64}{729} by multiplying \frac{4096}{531441}a^{12}b^{12} by the reciprocal of \frac{64}{729}.
\frac{\frac{\frac{4096}{729}a^{12}b^{12}}{64}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Multiply \frac{4096}{531441} and 729 to get \frac{4096}{729}.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Divide \frac{4096}{729}a^{12}b^{12} by 64 to get \frac{64}{729}a^{12}b^{12}.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(\frac{2}{3}a^{2}b^{2}\right)^{2}.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}\right)^{2}a^{4}\left(b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}\right)^{2}a^{4}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{64}{729}a^{12}b^{12}\times \frac{4}{9}a^{4}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{256}{6561}a^{12}b^{12}a^{4}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Multiply \frac{64}{729} and \frac{4}{9} to get \frac{256}{6561}.
\frac{\frac{256}{6561}a^{16}b^{12}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To multiply powers of the same base, add their exponents. Add 12 and 4 to get 16.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To multiply powers of the same base, add their exponents. Add 12 and 4 to get 16.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\left(-\frac{4}{15}\right)^{5}a^{5}\left(b^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{4}{15}ab^{2}\right)^{5}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\left(-\frac{4}{15}\right)^{5}a^{5}b^{10}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{-\frac{1024}{759375}a^{5}b^{10}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{4}{15} to the power of 5 and get -\frac{1024}{759375}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{-\frac{1024}{759375}a^{5}b^{10}\left(-\frac{5}{2}\right)^{5}a^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{5}{2}a\right)^{5}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{-\frac{1024}{759375}a^{5}b^{10}\left(-\frac{3125}{32}\right)a^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{5}{2} to the power of 5 and get -\frac{3125}{32}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{5}b^{10}a^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Multiply -\frac{1024}{759375} and -\frac{3125}{32} to get \frac{32}{243}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To multiply powers of the same base, add their exponents. Add 5 and 5 to get 10.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}\right)^{3}\left(a^{2}\right)^{3}\left(b^{2}\right)^{3}}\right)^{7}}
Expand \left(\frac{2}{3}a^{2}b^{2}\right)^{3}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}\right)^{3}a^{6}\left(b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}\right)^{3}a^{6}b^{6}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\frac{8}{27}a^{6}b^{6}}\right)^{7}}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{4}b^{4}}{\frac{8}{27}}\right)^{7}}
Cancel out a^{6}b^{6} in both numerator and denominator.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{4}b^{4}\times 27}{8}\right)^{7}}
Divide \frac{32}{243}a^{4}b^{4} by \frac{8}{27} by multiplying \frac{32}{243}a^{4}b^{4} by the reciprocal of \frac{8}{27}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{9}a^{4}b^{4}}{8}\right)^{7}}
Multiply \frac{32}{243} and 27 to get \frac{32}{9}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}a^{4}b^{4}\right)^{7}}
Divide \frac{32}{9}a^{4}b^{4} by 8 to get \frac{4}{9}a^{4}b^{4}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}\right)^{7}\left(a^{4}\right)^{7}\left(b^{4}\right)^{7}}
Expand \left(\frac{4}{9}a^{4}b^{4}\right)^{7}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}\right)^{7}a^{28}\left(b^{4}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}\right)^{7}a^{28}b^{28}}
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
\frac{\frac{256}{6561}a^{16}b^{16}}{\frac{16384}{4782969}a^{28}b^{28}}
Calculate \frac{4}{9} to the power of 7 and get \frac{16384}{4782969}.
\frac{\frac{256}{6561}}{\frac{16384}{4782969}a^{12}b^{12}}
Cancel out a^{16}b^{16} in both numerator and denominator.
\frac{256}{6561\times \frac{16384}{4782969}a^{12}b^{12}}
Express \frac{\frac{256}{6561}}{\frac{16384}{4782969}a^{12}b^{12}} as a single fraction.
\frac{256}{\frac{16384}{729}a^{12}b^{12}}
Multiply 6561 and \frac{16384}{4782969} to get \frac{16384}{729}.
\frac{\frac{\left(-\frac{4}{9}\right)^{6}\left(a^{3}\right)^{6}\left(b^{4}\right)^{6}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{4}{9}a^{3}b^{4}\right)^{6}.
\frac{\frac{\left(-\frac{4}{9}\right)^{6}a^{18}\left(b^{4}\right)^{6}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 3 and 6 to get 18.
\frac{\frac{\left(-\frac{4}{9}\right)^{6}a^{18}b^{24}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 4 and 6 to get 24.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\left(-\frac{2}{3}ab^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{4}{9} to the power of 6 and get \frac{4096}{531441}.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\left(-\frac{2}{3}\right)^{6}a^{6}\left(b^{2}\right)^{6}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{2}{3}ab^{2}\right)^{6}.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\left(-\frac{2}{3}\right)^{6}a^{6}b^{12}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 6 to get 12.
\frac{\frac{\frac{4096}{531441}a^{18}b^{24}}{\frac{64}{729}a^{6}b^{12}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{2}{3} to the power of 6 and get \frac{64}{729}.
\frac{\frac{\frac{4096}{531441}a^{12}b^{12}}{\frac{64}{729}}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Cancel out a^{6}b^{12} in both numerator and denominator.
\frac{\frac{\frac{4096}{531441}a^{12}b^{12}\times 729}{64}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Divide \frac{4096}{531441}a^{12}b^{12} by \frac{64}{729} by multiplying \frac{4096}{531441}a^{12}b^{12} by the reciprocal of \frac{64}{729}.
\frac{\frac{\frac{4096}{729}a^{12}b^{12}}{64}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Multiply \frac{4096}{531441} and 729 to get \frac{4096}{729}.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}a^{2}b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Divide \frac{4096}{729}a^{12}b^{12} by 64 to get \frac{64}{729}a^{12}b^{12}.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(\frac{2}{3}a^{2}b^{2}\right)^{2}.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}\right)^{2}a^{4}\left(b^{2}\right)^{2}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{64}{729}a^{12}b^{12}\times \left(\frac{2}{3}\right)^{2}a^{4}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{64}{729}a^{12}b^{12}\times \frac{4}{9}a^{4}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{256}{6561}a^{12}b^{12}a^{4}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Multiply \frac{64}{729} and \frac{4}{9} to get \frac{256}{6561}.
\frac{\frac{256}{6561}a^{16}b^{12}b^{4}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To multiply powers of the same base, add their exponents. Add 12 and 4 to get 16.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\left(-\frac{4}{15}ab^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To multiply powers of the same base, add their exponents. Add 12 and 4 to get 16.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\left(-\frac{4}{15}\right)^{5}a^{5}\left(b^{2}\right)^{5}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{4}{15}ab^{2}\right)^{5}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\left(-\frac{4}{15}\right)^{5}a^{5}b^{10}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{-\frac{1024}{759375}a^{5}b^{10}\left(-\frac{5}{2}a\right)^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{4}{15} to the power of 5 and get -\frac{1024}{759375}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{-\frac{1024}{759375}a^{5}b^{10}\left(-\frac{5}{2}\right)^{5}a^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Expand \left(-\frac{5}{2}a\right)^{5}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{-\frac{1024}{759375}a^{5}b^{10}\left(-\frac{3125}{32}\right)a^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Calculate -\frac{5}{2} to the power of 5 and get -\frac{3125}{32}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{5}b^{10}a^{5}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
Multiply -\frac{1024}{759375} and -\frac{3125}{32} to get \frac{32}{243}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}a^{2}b^{2}\right)^{3}}\right)^{7}}
To multiply powers of the same base, add their exponents. Add 5 and 5 to get 10.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}\right)^{3}\left(a^{2}\right)^{3}\left(b^{2}\right)^{3}}\right)^{7}}
Expand \left(\frac{2}{3}a^{2}b^{2}\right)^{3}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}\right)^{3}a^{6}\left(b^{2}\right)^{3}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\left(\frac{2}{3}\right)^{3}a^{6}b^{6}}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{10}b^{10}}{\frac{8}{27}a^{6}b^{6}}\right)^{7}}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{4}b^{4}}{\frac{8}{27}}\right)^{7}}
Cancel out a^{6}b^{6} in both numerator and denominator.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{243}a^{4}b^{4}\times 27}{8}\right)^{7}}
Divide \frac{32}{243}a^{4}b^{4} by \frac{8}{27} by multiplying \frac{32}{243}a^{4}b^{4} by the reciprocal of \frac{8}{27}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{\frac{32}{9}a^{4}b^{4}}{8}\right)^{7}}
Multiply \frac{32}{243} and 27 to get \frac{32}{9}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}a^{4}b^{4}\right)^{7}}
Divide \frac{32}{9}a^{4}b^{4} by 8 to get \frac{4}{9}a^{4}b^{4}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}\right)^{7}\left(a^{4}\right)^{7}\left(b^{4}\right)^{7}}
Expand \left(\frac{4}{9}a^{4}b^{4}\right)^{7}.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}\right)^{7}a^{28}\left(b^{4}\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
\frac{\frac{256}{6561}a^{16}b^{16}}{\left(\frac{4}{9}\right)^{7}a^{28}b^{28}}
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
\frac{\frac{256}{6561}a^{16}b^{16}}{\frac{16384}{4782969}a^{28}b^{28}}
Calculate \frac{4}{9} to the power of 7 and get \frac{16384}{4782969}.
\frac{\frac{256}{6561}}{\frac{16384}{4782969}a^{12}b^{12}}
Cancel out a^{16}b^{16} in both numerator and denominator.
\frac{256}{6561\times \frac{16384}{4782969}a^{12}b^{12}}
Express \frac{\frac{256}{6561}}{\frac{16384}{4782969}a^{12}b^{12}} as a single fraction.
\frac{256}{\frac{16384}{729}a^{12}b^{12}}
Multiply 6561 and \frac{16384}{4782969} to get \frac{16384}{729}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}