Evaluate
-\frac{1024}{243}\approx -4.21399177
Factor
-\frac{1024}{243} = -4\frac{52}{243} = -4.2139917695473255
Share
Copied to clipboard
\frac{\left(-\frac{3}{4}\right)^{-4}}{\frac{\left(-\frac{3}{4}\right)^{2}\left(-\frac{3}{4}\right)^{-3}}{\left(-\frac{3}{4}\right)^{-2}}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{\left(-\frac{3}{4}\right)^{-4}}{\frac{\left(-\frac{3}{4}\right)^{-1}}{\left(-\frac{3}{4}\right)^{-2}}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{\left(-\frac{3}{4}\right)^{-4}}{\left(-\frac{3}{4}\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -2 from -1 to get 1.
\frac{1}{\left(-\frac{3}{4}\right)^{5}}
Rewrite \left(-\frac{3}{4}\right)^{1} as \left(-\frac{3}{4}\right)^{-4}\left(-\frac{3}{4}\right)^{5}. Cancel out \left(-\frac{3}{4}\right)^{-4} in both numerator and denominator.
\frac{1}{-\frac{243}{1024}}
Calculate -\frac{3}{4} to the power of 5 and get -\frac{243}{1024}.
1\left(-\frac{1024}{243}\right)
Divide 1 by -\frac{243}{1024} by multiplying 1 by the reciprocal of -\frac{243}{1024}.
-\frac{1024}{243}
Multiply 1 and -\frac{1024}{243} to get -\frac{1024}{243}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}