Evaluate
\frac{5c^{4}}{2}
Expand
\frac{5c^{4}}{2}
Share
Copied to clipboard
\frac{\left(-\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Expand \left(-\frac{1}{4}a^{2}bc\right)^{2}.
\frac{\left(-\frac{1}{4}\right)^{2}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{16}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{2}c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Multiply \frac{1}{16} and 3 to get \frac{3}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Combine -\frac{1}{2}a^{2}b and \frac{3}{4}a^{2}b to get \frac{1}{4}a^{2}b.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Expand \left(\frac{1}{4}a^{2}b\right)^{2}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\frac{1}{16}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{3}{16}c^{4}}{\frac{1}{16}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Cancel out b^{2}a^{4} in both numerator and denominator.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Divide \frac{3}{16}c^{4} by \frac{1}{16} by multiplying \frac{3}{16}c^{4} by the reciprocal of \frac{1}{16}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}\left(b^{2}\right)^{2}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Expand \left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}}{-\frac{1}{2}}
Cancel out a^{2}c^{2}b^{4} in both numerator and denominator.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}\times 2}{-1}
Divide \frac{1}{4}c^{4} by -\frac{1}{2} by multiplying \frac{1}{4}c^{4} by the reciprocal of -\frac{1}{2}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{2}c^{4}}{-1}
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
\frac{3}{16}c^{4}\times 16-\frac{1}{2}c^{4}
Anything divided by -1 gives its opposite.
3c^{4}-\frac{1}{2}c^{4}
Multiply \frac{3}{16} and 16 to get 3.
\frac{5}{2}c^{4}
Combine 3c^{4} and -\frac{1}{2}c^{4} to get \frac{5}{2}c^{4}.
\frac{\left(-\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Expand \left(-\frac{1}{4}a^{2}bc\right)^{2}.
\frac{\left(-\frac{1}{4}\right)^{2}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{16}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{2}c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Multiply \frac{1}{16} and 3 to get \frac{3}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Combine -\frac{1}{2}a^{2}b and \frac{3}{4}a^{2}b to get \frac{1}{4}a^{2}b.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Expand \left(\frac{1}{4}a^{2}b\right)^{2}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\frac{1}{16}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{3}{16}c^{4}}{\frac{1}{16}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Cancel out b^{2}a^{4} in both numerator and denominator.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Divide \frac{3}{16}c^{4} by \frac{1}{16} by multiplying \frac{3}{16}c^{4} by the reciprocal of \frac{1}{16}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}\left(b^{2}\right)^{2}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Expand \left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}}{-\frac{1}{2}}
Cancel out a^{2}c^{2}b^{4} in both numerator and denominator.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}\times 2}{-1}
Divide \frac{1}{4}c^{4} by -\frac{1}{2} by multiplying \frac{1}{4}c^{4} by the reciprocal of -\frac{1}{2}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{2}c^{4}}{-1}
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
\frac{3}{16}c^{4}\times 16-\frac{1}{2}c^{4}
Anything divided by -1 gives its opposite.
3c^{4}-\frac{1}{2}c^{4}
Multiply \frac{3}{16} and 16 to get 3.
\frac{5}{2}c^{4}
Combine 3c^{4} and -\frac{1}{2}c^{4} to get \frac{5}{2}c^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}