Evaluate
7a^{4}b^{5}
Expand
7a^{4}b^{5}
Share
Copied to clipboard
\left(\frac{\left(-\frac{1}{2}a^{3}b\right)^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{2}\left(-2\right)b^{2}\right)\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(\frac{\left(-\frac{1}{2}a^{3}b\right)^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(\frac{\left(-\frac{1}{2}\right)^{3}\left(a^{3}\right)^{3}b^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Expand \left(-\frac{1}{2}a^{3}b\right)^{3}.
\left(\frac{\left(-\frac{1}{2}\right)^{3}a^{9}b^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\left(\frac{-\frac{1}{8}a^{9}b^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\left(\frac{-\frac{1}{8}ba^{3}}{\frac{1}{4}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Cancel out b^{2}a^{6} in both numerator and denominator.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Divide -\frac{1}{8}ba^{3} by \frac{1}{4} by multiplying -\frac{1}{8}ba^{3} by the reciprocal of \frac{1}{4}.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{\left(-2\right)^{3}a^{3}b^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Expand \left(-2ab\right)^{3}.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{-8a^{3}b^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Calculate -2 to the power of 3 and get -8.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{-4ba^{3}}{-1}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Cancel out 2b^{2} in both numerator and denominator.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Anything divided by -1 gives its opposite.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\left(6ab^{4}-\left(-2ab^{4}\left(-2\right)\right)\right)
Multiply -3 and -2 to get 6.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\left(6ab^{4}-4ab^{4}\right)
Multiply -2 and -2 to get 4.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\times 2ab^{4}
Combine 6ab^{4} and -4ab^{4} to get 2ab^{4}.
7ba^{3}ab^{4}
Use the distributive property to multiply -\frac{1}{8}ba^{3}\times 4+4ba^{3} by 2.
7b^{5}a^{3}a
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
7b^{5}a^{4}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\left(\frac{\left(-\frac{1}{2}a^{3}b\right)^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{2}\left(-2\right)b^{2}\right)\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(\frac{\left(-\frac{1}{2}a^{3}b\right)^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(\frac{\left(-\frac{1}{2}\right)^{3}\left(a^{3}\right)^{3}b^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Expand \left(-\frac{1}{2}a^{3}b\right)^{3}.
\left(\frac{\left(-\frac{1}{2}\right)^{3}a^{9}b^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\left(\frac{-\frac{1}{8}a^{9}b^{3}}{\frac{1}{4}a^{6}b^{2}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\left(\frac{-\frac{1}{8}ba^{3}}{\frac{1}{4}}+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Cancel out b^{2}a^{6} in both numerator and denominator.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{\left(-2ab\right)^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Divide -\frac{1}{8}ba^{3} by \frac{1}{4} by multiplying -\frac{1}{8}ba^{3} by the reciprocal of \frac{1}{4}.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{\left(-2\right)^{3}a^{3}b^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Expand \left(-2ab\right)^{3}.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{-8a^{3}b^{3}}{-2b^{2}}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Calculate -2 to the power of 3 and get -8.
\left(-\frac{1}{8}ba^{3}\times 4+\frac{-4ba^{3}}{-1}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Cancel out 2b^{2} in both numerator and denominator.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\left(-3ab^{4}\left(-2\right)-\left(-2ab^{4}\left(-2\right)\right)\right)
Anything divided by -1 gives its opposite.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\left(6ab^{4}-\left(-2ab^{4}\left(-2\right)\right)\right)
Multiply -3 and -2 to get 6.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\left(6ab^{4}-4ab^{4}\right)
Multiply -2 and -2 to get 4.
\left(-\frac{1}{8}ba^{3}\times 4+4ba^{3}\right)\times 2ab^{4}
Combine 6ab^{4} and -4ab^{4} to get 2ab^{4}.
7ba^{3}ab^{4}
Use the distributive property to multiply -\frac{1}{8}ba^{3}\times 4+4ba^{3} by 2.
7b^{5}a^{3}a
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
7b^{5}a^{4}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}