Evaluate
2
Factor
2
Share
Copied to clipboard
\left(2\sqrt{3}-\sqrt{3}\sqrt{2}+2\sqrt{2}-\left(\sqrt{2}\right)^{2}+\left(\frac{1}{2}\sqrt{2}+\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Use the distributive property to multiply \sqrt{3}+\sqrt{2} by 2-\sqrt{2}.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-\left(\sqrt{2}\right)^{2}+\left(\frac{1}{2}\sqrt{2}+\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\left(\frac{1}{2}\sqrt{2}+\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\frac{1}{4}\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}\sqrt{2}+\sqrt{3}\right)^{2}.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\frac{1}{4}\times 2+\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\frac{1}{2}+\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\frac{1}{2}+\sqrt{6}+\left(\sqrt{3}\right)^{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\frac{1}{2}+\sqrt{6}+3-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{3} is 3.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}-2+\frac{7}{2}+\sqrt{6}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Add \frac{1}{2} and 3 to get \frac{7}{2}.
\left(2\sqrt{3}-\sqrt{6}+2\sqrt{2}+\frac{3}{2}+\sqrt{6}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Add -2 and \frac{7}{2} to get \frac{3}{2}.
\left(2\sqrt{3}+2\sqrt{2}+\frac{3}{2}-\frac{3}{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Combine -\sqrt{6} and \sqrt{6} to get 0.
\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Subtract \frac{3}{2} from \frac{3}{2} to get 0.
2\left(\sqrt{3}\right)^{2}-2\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply 2\sqrt{3}+2\sqrt{2} by \sqrt{3}-\sqrt{2} and combine like terms.
2\times 3-2\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
6-2\left(\sqrt{2}\right)^{2}
Multiply 2 and 3 to get 6.
6-2\times 2
The square of \sqrt{2} is 2.
6-4
Multiply -2 and 2 to get -4.
2
Subtract 4 from 6 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}