Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\right)\left(x+y\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}. Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}.
\frac{\left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\left(x+y\right)
Since \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}}{\left(x+y\right)\left(x-y\right)}\left(x+y\right)
Do the multiplications in \left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right).
\frac{4xy}{\left(x+y\right)\left(x-y\right)}\left(x+y\right)
Combine like terms in x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}.
\frac{4xy\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Express \frac{4xy}{\left(x+y\right)\left(x-y\right)}\left(x+y\right) as a single fraction.
\frac{4xy}{x-y}
Cancel out x+y in both numerator and denominator.
\left(\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\right)\left(x+y\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}. Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}.
\frac{\left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\left(x+y\right)
Since \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}}{\left(x+y\right)\left(x-y\right)}\left(x+y\right)
Do the multiplications in \left(x+y\right)\left(x+y\right)-\left(x-y\right)\left(x-y\right).
\frac{4xy}{\left(x+y\right)\left(x-y\right)}\left(x+y\right)
Combine like terms in x^{2}+xy+xy+y^{2}-x^{2}+xy+xy-y^{2}.
\frac{4xy\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
Express \frac{4xy}{\left(x+y\right)\left(x-y\right)}\left(x+y\right) as a single fraction.
\frac{4xy}{x-y}
Cancel out x+y in both numerator and denominator.