Evaluate
\frac{3}{\left(m+n\right)^{2}}
Expand
\frac{3}{\left(m+n\right)^{2}}
Share
Copied to clipboard
\frac{\frac{\left(m-n\right)\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}-\frac{\left(m+n\right)\left(m+n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+n and m-n is \left(m+n\right)\left(m-n\right). Multiply \frac{m-n}{m+n} times \frac{m-n}{m-n}. Multiply \frac{m+n}{m-n} times \frac{m+n}{m+n}.
\frac{\frac{\left(m-n\right)\left(m-n\right)-\left(m+n\right)\left(m+n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Since \frac{\left(m-n\right)\left(m-n\right)}{\left(m+n\right)\left(m-n\right)} and \frac{\left(m+n\right)\left(m+n\right)}{\left(m+n\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-mn-mn+n^{2}-m^{2}-mn-mn-n^{2}}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Do the multiplications in \left(m-n\right)\left(m-n\right)-\left(m+n\right)\left(m+n\right).
\frac{\frac{-4mn}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Combine like terms in m^{2}-mn-mn+n^{2}-m^{2}-mn-mn-n^{2}.
\frac{-4mnmn}{\left(m+n\right)\left(m-n\right)\left(m+n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Divide \frac{-4mn}{\left(m+n\right)\left(m-n\right)} by \frac{m+n}{mn} by multiplying \frac{-4mn}{\left(m+n\right)\left(m-n\right)} by the reciprocal of \frac{m+n}{mn}.
\frac{-4m^{2}nn}{\left(m+n\right)\left(m-n\right)\left(m+n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply m and m to get m^{2}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)\left(m-n\right)\left(m+n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply n and n to get n^{2}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply m+n and m+n to get \left(m+n\right)^{2}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)}\left(\frac{n}{mn}-\frac{m}{mn}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and n is mn. Multiply \frac{1}{m} times \frac{n}{n}. Multiply \frac{1}{n} times \frac{m}{m}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)}\times \frac{n-m}{mn}+\frac{3-4mn}{\left(m+n\right)^{2}}
Since \frac{n}{mn} and \frac{m}{mn} have the same denominator, subtract them by subtracting their numerators.
\frac{-4m^{2}n^{2}\left(n-m\right)}{\left(m+n\right)^{2}\left(m-n\right)mn}+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply \frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)} times \frac{n-m}{mn} by multiplying numerator times numerator and denominator times denominator.
\frac{-4\left(-1\right)\left(m-n\right)m^{2}n^{2}}{mn\left(m-n\right)\left(m+n\right)^{2}}+\frac{3-4mn}{\left(m+n\right)^{2}}
Extract the negative sign in n-m.
\frac{-4\left(-1\right)mn}{\left(m+n\right)^{2}}+\frac{3-4mn}{\left(m+n\right)^{2}}
Cancel out mn\left(m-n\right) in both numerator and denominator.
\frac{-4\left(-1\right)mn+3-4mn}{\left(m+n\right)^{2}}
Since \frac{-4\left(-1\right)mn}{\left(m+n\right)^{2}} and \frac{3-4mn}{\left(m+n\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{4mn+3-4mn}{\left(m+n\right)^{2}}
Do the multiplications in -4\left(-1\right)mn+3-4mn.
\frac{3}{\left(m+n\right)^{2}}
Combine like terms in 4mn+3-4mn.
\frac{3}{m^{2}+2mn+n^{2}}
Expand \left(m+n\right)^{2}.
\frac{\frac{\left(m-n\right)\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}-\frac{\left(m+n\right)\left(m+n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+n and m-n is \left(m+n\right)\left(m-n\right). Multiply \frac{m-n}{m+n} times \frac{m-n}{m-n}. Multiply \frac{m+n}{m-n} times \frac{m+n}{m+n}.
\frac{\frac{\left(m-n\right)\left(m-n\right)-\left(m+n\right)\left(m+n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Since \frac{\left(m-n\right)\left(m-n\right)}{\left(m+n\right)\left(m-n\right)} and \frac{\left(m+n\right)\left(m+n\right)}{\left(m+n\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-mn-mn+n^{2}-m^{2}-mn-mn-n^{2}}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Do the multiplications in \left(m-n\right)\left(m-n\right)-\left(m+n\right)\left(m+n\right).
\frac{\frac{-4mn}{\left(m+n\right)\left(m-n\right)}}{\frac{m+n}{mn}}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Combine like terms in m^{2}-mn-mn+n^{2}-m^{2}-mn-mn-n^{2}.
\frac{-4mnmn}{\left(m+n\right)\left(m-n\right)\left(m+n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Divide \frac{-4mn}{\left(m+n\right)\left(m-n\right)} by \frac{m+n}{mn} by multiplying \frac{-4mn}{\left(m+n\right)\left(m-n\right)} by the reciprocal of \frac{m+n}{mn}.
\frac{-4m^{2}nn}{\left(m+n\right)\left(m-n\right)\left(m+n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply m and m to get m^{2}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)\left(m-n\right)\left(m+n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply n and n to get n^{2}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)}\left(\frac{1}{m}-\frac{1}{n}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply m+n and m+n to get \left(m+n\right)^{2}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)}\left(\frac{n}{mn}-\frac{m}{mn}\right)+\frac{3-4mn}{\left(m+n\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and n is mn. Multiply \frac{1}{m} times \frac{n}{n}. Multiply \frac{1}{n} times \frac{m}{m}.
\frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)}\times \frac{n-m}{mn}+\frac{3-4mn}{\left(m+n\right)^{2}}
Since \frac{n}{mn} and \frac{m}{mn} have the same denominator, subtract them by subtracting their numerators.
\frac{-4m^{2}n^{2}\left(n-m\right)}{\left(m+n\right)^{2}\left(m-n\right)mn}+\frac{3-4mn}{\left(m+n\right)^{2}}
Multiply \frac{-4m^{2}n^{2}}{\left(m+n\right)^{2}\left(m-n\right)} times \frac{n-m}{mn} by multiplying numerator times numerator and denominator times denominator.
\frac{-4\left(-1\right)\left(m-n\right)m^{2}n^{2}}{mn\left(m-n\right)\left(m+n\right)^{2}}+\frac{3-4mn}{\left(m+n\right)^{2}}
Extract the negative sign in n-m.
\frac{-4\left(-1\right)mn}{\left(m+n\right)^{2}}+\frac{3-4mn}{\left(m+n\right)^{2}}
Cancel out mn\left(m-n\right) in both numerator and denominator.
\frac{-4\left(-1\right)mn+3-4mn}{\left(m+n\right)^{2}}
Since \frac{-4\left(-1\right)mn}{\left(m+n\right)^{2}} and \frac{3-4mn}{\left(m+n\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{4mn+3-4mn}{\left(m+n\right)^{2}}
Do the multiplications in -4\left(-1\right)mn+3-4mn.
\frac{3}{\left(m+n\right)^{2}}
Combine like terms in 4mn+3-4mn.
\frac{3}{m^{2}+2mn+n^{2}}
Expand \left(m+n\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}