Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\frac{\frac{2}{3}+\frac{17}{2}}{\frac{4}{3}-\frac{5}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{4}{6}+\frac{51}{6}}{\frac{4}{3}-\frac{5}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{17}{2} to fractions with denominator 6.
\frac{\frac{4+51}{6}}{\frac{4}{3}-\frac{5}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Since \frac{4}{6} and \frac{51}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{55}{6}}{\frac{4}{3}-\frac{5}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Add 4 and 51 to get 55.
\frac{\frac{55}{6}}{\frac{16}{12}-\frac{5}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Least common multiple of 3 and 12 is 12. Convert \frac{4}{3} and \frac{5}{12} to fractions with denominator 12.
\frac{\frac{55}{6}}{\frac{16-5}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Since \frac{16}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{55}{6}}{\frac{11}{12}}\left(\frac{1}{6}+\frac{1}{15}\right)
Subtract 5 from 16 to get 11.
\frac{55}{6}\times \frac{12}{11}\left(\frac{1}{6}+\frac{1}{15}\right)
Divide \frac{55}{6} by \frac{11}{12} by multiplying \frac{55}{6} by the reciprocal of \frac{11}{12}.
\frac{55\times 12}{6\times 11}\left(\frac{1}{6}+\frac{1}{15}\right)
Multiply \frac{55}{6} times \frac{12}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{660}{66}\left(\frac{1}{6}+\frac{1}{15}\right)
Do the multiplications in the fraction \frac{55\times 12}{6\times 11}.
10\left(\frac{1}{6}+\frac{1}{15}\right)
Divide 660 by 66 to get 10.
10\left(\frac{5}{30}+\frac{2}{30}\right)
Least common multiple of 6 and 15 is 30. Convert \frac{1}{6} and \frac{1}{15} to fractions with denominator 30.
10\times \frac{5+2}{30}
Since \frac{5}{30} and \frac{2}{30} have the same denominator, add them by adding their numerators.
10\times \frac{7}{30}
Add 5 and 2 to get 7.
\frac{10\times 7}{30}
Express 10\times \frac{7}{30} as a single fraction.
\frac{70}{30}
Multiply 10 and 7 to get 70.
\frac{7}{3}
Reduce the fraction \frac{70}{30} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}